
LEGWORK

Tom Wagg, Katie Breivik

Oct 12, 2023

CONTENTS

1 Citing LEGWORK 3

2 Tutorials 5

3 Demos 63

4 LEGWORK modules and API reference 87

5 Derivations and Equation Reference 133

6 Scope and Limitations 145

Bibliography 147

Python Module Index 149

Index 151

i

ii

LEGWORK

LEGWORK (LISA Evolution and Gravitational Wave ORbit Kit) is a python package designed to calculate signal-
to-noise ratios for GWs emitted from inspiraling binary systems that are potentially observable by LISA.

LEGWORK also contains a plotting module so you can show off those detectable GW sources of yours and treats any
and all kinds of stellar-origin inspiralling binaries. Circular and stationary? No problem! Eccentric and chirping?
We’ve got you covered!

Want to determine if your favorite source is detectable by LISA? Let LEGWORK do the legwork and keep the LISA
literature free from spurious factors of 2!

Stable (with conda)

This is our recommend installation method! Follow the steps below to start using LEGWORK!

1. Download the environment.yml file from our repository

2. Create a new conda environment using this file

conda env create -f path/to/environment.yml

3. Activate the environment by running

conda activate legwork

and you should be all set! Check out our quickstart tutorial to learn some LEGWORK basics. Note that if you also want
to work with the notebooks in the tutorials and/or demos you’ll also need to install jupyter/ipython in this environment!

Stable (without conda)

We don’t recommend installing LEGWORK without a conda environment but if you prefer to do it this way then all you
need to do is run

pip install legwork

and you should be all set! Check out our quickstart tutorial to learn some LEGWORK basics. Note that if you also want
to work with the notebooks in the tutorials and/or demos you’ll also need to install jupyter/ipython in this environment!

CONTENTS 1

LEGWORK

Development (from GitHub)

Warning: We don’t guarantee that there won’t be mistakes or bugs in the development version, use at your own
risk!

The latest development version is available directly from our GitHub Repo. To start, clone the repository onto your
machine:

git clone https://github.com/TeamLEGWORK/LEGWORK
cd LEGWORK

Next, we recommend that you create a Conda environment for working with LEGWORK. You can do this by running

conda create --name legwork "python>=3.7" pip "numba>=0.50" "numpy>=1.17" "astropy>=4.0"
→˓"scipy>=1.5.0" "matplotlib>=3.3.2" "seaborn>=0.11.1" "schwimmbad>=0.3.2" -c conda-
→˓forge -c defaults

And then activate the environment by running

conda activate legwork

At this point, all that’s left to do is install LEGWORK!

pip install .

and you should be all set! Check out our quickstart tutorial to learn some LEGWORK basics. Note that if you also want
to work with the notebooks in the tutorials and/or demos you’ll also need to install jupyter/ipython in this environment!

2 CONTENTS

https://github.com/TeamLEGWORK/LEGWORK

CHAPTER

ONE

CITING LEGWORK

If you use LEGWORK in a scientific publication we ask that you please cite it. LEGWORK was jointly published in
ApJS and JOSS and we ask that you please cite both papers.
Below we include two ready-made BibTeX entries, one for each paper. We recommend that you cite the ApJS paper
when you mention LEGWORK in the main text and cite the JOSS paper in the Software section at the end of your
paper.

@ARTICLE{LEGWORK_apjs,
author = {{Wagg}, T. and {Breivik}, K. and {de Mink}, S.~E.},
title = "{LEGWORK: A Python Package for Computing the Evolution and Detectability of␣

→˓Stellar-origin Gravitational-wave Sources with Space-based Detectors}",
journal = {\apjs},
keywords = {Open source software, Gravitational waves, Gravitational wave detectors,␣

→˓Compact objects, Orbital evolution, White dwarf stars, Neutron stars, Stellar mass␣
→˓black holes, 1866, 678, 676, 288, 1178, 1799, 1108, 1611, Astrophysics - High Energy␣
→˓Astrophysical Phenomena, General Relativity and Quantum Cosmology},

year = 2022,
month = jun,
volume = {260},
number = {2},
eid = {52},
pages = {52},
doi = {10.3847/1538-4365/ac5c52},
archivePrefix = {arXiv},
eprint = {2111.08717},
primaryClass = {astro-ph.HE},
adsurl = {https://ui.adsabs.harvard.edu/abs/2022ApJS..260...52W},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}

}

@ARTICLE{LEGWORK_joss,
author = {{Wagg}, Tom and {Breivik}, Katelyn and {de Mink}, Selma},
title = "{LEGWORK: A python package for computing the evolution and detectability of␣

→˓stellar-origin gravitational-wave sources with space-based detectors}",
journal = {The Journal of Open Source Software},
keywords = {neutron stars, white dwarfs, TianQin, Python, stellar mass black holes,␣

→˓gravitational wave detectors, orbital evolution, compact objects, gravitational waves,␣
→˓LISA, astronomy},

year = 2022,
month = feb,
volume = {7},

(continues on next page)

3

LEGWORK

(continued from previous page)

number = {70},
eid = {3998},
pages = {3998},
doi = {10.21105/joss.03998},
adsurl = {https://ui.adsabs.harvard.edu/abs/2022JOSS....7.3998W},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}

}

More citation methods are available on ADS for the ApJS and JOSS papers if you’d rather use a different format!

4 Chapter 1. Citing LEGWORK

https://ui.adsabs.harvard.edu/abs/2022ApJS..260...52W/exportcitation
https://ui.adsabs.harvard.edu/abs/2022JOSS....7.3998W/exportcitation

CHAPTER

TWO

TUTORIALS

This section contains a series of tutorials on how to use and get the most out of LEGWORK. We are working to add more
tutorials over time and are very open to feedback!

The fastest way to get started is our quickstart tutorial:

For more in-depth details and examples, check out our other tutorials:

Note: This tutorial was generated from a Jupyter notebook that can be downloaded here. If you’d like to reproduce the
results in the notebook, or make changes to the code, we recommend downloading this notebook and running it with
Jupyter as certain cells (mostly those that change plot styles) are excluded from the tutorials.

2.1 Quickstart

In this tutorial, we explain how to quickly use LEGWORK to calculate the detectability of a collection of sources.

Let’s start by importing the source and visualisation modules of LEGWORK and some other common packages.

[2]: import legwork.source as source
import legwork.visualisation as vis

import numpy as np
import astropy.units as u
import matplotlib.pyplot as plt

Next let’s create a random collection of possible LISA sources in order to assess their detectability.

[4]: # create a random collection of sources
n_values = 1500
m_1 = np.random.uniform(0, 10, n_values) * u.Msun
m_2 = np.random.uniform(0, 10, n_values) * u.Msun
dist = np.random.normal(8, 1.5, n_values) * u.kpc
f_orb = 10**(-5 * np.random.power(3, n_values)) * u.Hz
ecc = 1 - np.random.power(5, n_values)

We can instantiate a Source class using these random sources in order to analyse the population. There are also a
series of optional parameters which we don’t cover here but if you are interested in the purpose of these then check out
the Using the Source Class tutorial.

[5]: sources = source.Source(m_1=m_1, m_2=m_2, ecc=ecc, dist=dist, f_orb=f_orb)

5

https://github.com/TeamLEGWORK/LEGWORK/tree/main/docs/notebooks/Quickstart.ipynb

LEGWORK

This Source class has many methods for calculating strains, visualising populations and more. You can learn more
about these in the Using the Source Class tutorial. For now, we shall focus only on the calculation of the signal-to-noise
ratio.

Therefore, let’s calculate the SNR for these sources. We set verbose=True to give an impression of what sort of sources
we have created. This function will split the sources based on whether they are stationary/evolving and circular/eccentric
and use one of 4 SNR functions for each subpopulation.

[6]: snr = sources.get_snr(verbose=True)

Calculating SNR for 1500 sources
0 sources have already merged
1396 sources are stationary

403 sources are stationary and circular
993 sources are stationary and eccentric

104 sources are evolving
24 sources are evolving and circular
80 sources are evolving and eccentric

These SNR values are now stored in sources.snr and we can mask those that don’t meet some detectable threshold.

[7]: detectable_threshold = 7
detectable_sources = sources.snr > 7
print("{} of the {} sources are detectable".format(len(sources.snr[detectable_sources]),␣
→˓n_values))

580 of the 1500 sources are detectable

And just like that we know the number of detectable sources! It could be interesting to see how the SNR varies with
orbital frequency so let’s use the legwork.source.Source.plot_source_variables() to create a 2D density
distribution of these variables.

[8]: fig, ax = sources.plot_source_variables(xstr="f_orb", ystr="snr", disttype="kde", log_
→˓scale=(True, True),

fill=True, xlim=(2e-6, 2e-1), which_
→˓sources=sources.snr > 0)

6 Chapter 2. Tutorials

LEGWORK

The reason for this shape may not be immediately obvious. However, if we also use the visualisation module to overlay
the LISA sensitivity curve, it becomes clear that the SNRs increase in step with the decrease in the noise and flatten out
as the sensitivity curve does as we would expect. To learn more about the visualisation options that LEGWORK offers,
check out the Visualisation tutorial.

[9]: # create the same plot but set `show=False`
fig, ax = sources.plot_source_variables(xstr="f_orb", ystr="snr", disttype="kde", log_
→˓scale=(True, True),

fill=True, show=False, which_sources=sources.snr␣
→˓> 0)

duplicate the x axis and plot the LISA sensitivity curve
right_ax = ax.twinx()
frequency_range = np.logspace(np.log10(2e-6), np.log10(2e-1), 1000) * u.Hz
vis.plot_sensitivity_curve(frequency_range=frequency_range, fig=fig, ax=right_ax)

plt.show()

2.1. Quickstart 7

LEGWORK

That’s it for this quickstart into using LEGWORK. For more details on using LEGWORK to calculate strains, evolve binaries
and visualise their distributions check out the other tutorials and demos in these docs! You can also read more about
the scope and limitations of LEGWORK on this page.

Note: This tutorial was generated from a Jupyter notebook that can be downloaded here. If you’d like to reproduce the
results in the notebook, or make changes to the code, we recommend downloading this notebook and running it with
Jupyter as certain cells (mostly those that change plot styles) are excluded from the tutorials.

2.2 Using the Source Class

In this tutorial, we’ll take an in-depth look at the LEGWORK Source class and its various methods that you can use to
your advantage.

Let’s start by importing the source module of LEGWORK and some other common packages.

[2]: from legwork import source, utils, visualisation

import numpy as np
import astropy.units as u
from astropy.coordinates import SkyCoord
import matplotlib.pyplot as plt

8 Chapter 2. Tutorials

https://github.com/TeamLEGWORK/LEGWORK/tree/main/docs/notebooks/Source.ipynb

LEGWORK

2.2.1 Instantiating a Source Class

The Source class gives you access to the majority of the functionality of LEGWORK from one simple class. Once a
collection of sources is instantiated in this class you can calculate their strains and signal-to-noise ratios, evolve them
over time and visualise their distributions or plot them on the LISA sensitivity curve.

Basic input

Let’s start by creating a random collection of possible LISA sources.

[4]: # create a random collection of sources
n_values = 1500
m_1 = np.random.uniform(0, 10, n_values) * u.Msun
m_2 = np.random.uniform(0, 10, n_values) * u.Msun
dist = np.random.normal(8, 1.5, n_values) * u.kpc
f_orb = 10**(-5 * np.random.power(3, n_values)) * u.Hz
ecc = 1 - np.random.power(3, n_values)

We can instantiate a Source class using these random sources as follows:

[5]: sources = source.Source(m_1=m_1, m_2=m_2, ecc=ecc, dist=dist, f_orb=f_orb, gw_lum_tol=0.
→˓05, stat_tol=1e-2,

interpolate_g=True, interpolate_sc=True,
sc_params={

"instrument": "LISA",
"custom_psd": None,
"t_obs": 4 * u.yr,
"L": 2.5e9 * u.m,
"approximate_R": False,
"confusion_noise": 'robson19'

})

There’s a couple of things to focus on here. The masses, eccentricity and distance are all required for every source.
However, you can choose to either supply the orbital frequency, f_orb, or the semi-major axis, a. Whichever you
supply, the other will be immediately calculating using Kepler’s third law and can be accessed immediately.

[6]: # the semi-major axes have been calculated
sources.a

[6]: [0.0022907693, 0.0001858196, 0.022224962, . . . , 0.013641543, 0.054689977, 0.0024257776] AU

Gravitational Wave Luminosity Tolerance

Next, we set the tolerance for the accuracy of the gravitational wave luminosity, gw_lum_tol, to 5%. This tolerance is
used for two calculations:

1. finding the transition between “circular” and “eccentric” binaries

2. determining the number of harmonics required to capture the entire signal of a binary

Since, a more stringent tolerance will require binaries to be considered eccentric at lower eccentricities (and thus
consider more than the 𝑛 = 2 harmonic), whilst also require computing more harmonics in order to get the luminosity
equal to the true value within the tolerance.

Let’s see how this works in practice.

2.2. Using the Source Class 9

LEGWORK

[7]: # start with a tolerance of 5%
sources.update_gw_lum_tol(gw_lum_tol=0.05)
print("Eccentricity at which we consider sources to be eccentric is {:.3}".
→˓format(sources.ecc_tol),

"for a tolerance of {:.2}".format(sources._gw_lum_tol))

change to a tolerance of 1%
sources.update_gw_lum_tol(gw_lum_tol=0.01)

print("Eccentricity at which we consider sources to be eccentric is {:.3}".
→˓format(sources.ecc_tol),

"for a tolerance of {:.2}".format(sources._gw_lum_tol))

Eccentricity at which we consider sources to be eccentric is 0.0667 for a tolerance of 0.
→˓05
Eccentricity at which we consider sources to be eccentric is 0.0295 for a tolerance of 0.
→˓01

Warning: if you need to change the gw_lum_tol of a Source class then it is critical that you do so us-
ing the legwork.source.Source.update_gw_lum_tol() (example above) rather than changing Source.
_gw_lum_tol directly. This is because the function also makes sure that ecc_tol and harmonics_required
function are recalculated and kept in sync.

We can also plot the number of required harmonics for each eccentricity for different tolerances and see that you always
need a greater or equal number of harmonics for a smaller tolerance.

[8]: fig, ax = plt.subplots()
e_range = np.linspace(0.01, 0.995, 10000)

change to a tolerance of 1%
sources.update_gw_lum_tol(gw_lum_tol=0.01)
ax.loglog(e_range, sources.harmonics_required(e_range), lw=3, label="1% tolerance")

reset to a tolerance of 5%
sources.update_gw_lum_tol(gw_lum_tol=0.05)
ax.loglog(e_range, sources.harmonics_required(e_range), lw=3, label="5% tolerance")

ax.legend()

ax.set_xlabel(r"$\log_{10}(e)$")
ax.set_ylabel("Harmonics needed for sum")

plt.show()

10 Chapter 2. Tutorials

LEGWORK

Stationary Tolerance

We also set the stationary tolerance in instantiating the class. This tolerance is used to determine which binaries are
stationary in frequency space, and thus for which ones we can use the stationary approximation of the SNR. We define
a binary as stationary in frequency space on the timescale of the LISA mission if the fractional change in orbital
frequency, ∆𝑓orb/𝑓orb, is less than or equal to the tolerance.

We can see how this changes things in practice.

[9]: # create a plot
fig, axes = plt.subplots(1, 2, figsize=(16, 8))
fig.subplots_adjust(wspace=0.3)

use the same labels for each
labels = ["Stationary", "Evolving"]

loop over tolerances and colours
for i, vals in enumerate([(1e-5, "Purples"), (1e-2, "Blues")]):

tol, col = vals

adjust the tolerance
sources.stat_tol = tol

get a mask for the stationary binaries
stat_mask = sources.get_source_mask(stationary=True)

(continues on next page)

2.2. Using the Source Class 11

LEGWORK

(continued from previous page)

create a pie chart
axes[i].pie([len(stat_mask[stat_mask]), len(stat_mask[np.logical_not(stat_mask)])],␣

→˓labels=labels,
colors=[plt.get_cmap(col)(0.5), plt.get_cmap(col)(0.7)])

write what the tolerance was
axes[i].set_xlabel("Stationary if "\

+ r"$\frac{\Delta f_{\rm orb}}{f_{\rm orb}} <$"\
+ "{:.3f}%".format(tol * 100))

plt.show()

𝑔(𝑛, 𝑒) Interpolation

Another thing to consider when creating a new source class is whether to interpolate the 𝑔(𝑛, 𝑒) function from Peters
(1963). This function is a complex combination of Bessel functions and thus is slow to compute. We therefore add
the option to load in pre-computed 𝑔(𝑛, 𝑒) values and interpolate them instead of computing the values directly. We
perform this interpolation once upon class creation and use it throughout after this. The pre-computed values span
1000 values of eccentricity and 10000 harmonics and thus are accurate for 𝑒 < 0.995.

We can illustrate the difference in speed and results for the interpolated function vs. the real one.

[10]: %%timeit
e_range = np.random.uniform(0.0, 0.995, 1000)
n_range = np.arange(1, 150 + 1).astype(int)

the argsorts here unsort the output since interp2d automatically sorts it
sources.g(n_range, e_range)[np.argsort(e_range).argsort()]

2.24 ms ± 324 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

12 Chapter 2. Tutorials

LEGWORK

[11]: %%timeit
e_range = np.random.uniform(0.0, 0.995, 1000)
n_range = np.arange(1, 150 + 1).astype(int)

E, N = np.meshgrid(e_range, n_range)

utils.peters_g(N, E)

1.07 s ± 41.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

You can see here that the interpolated function is roughly 500 times faster. Now let’s ensure that they are giving the
same results.

[12]: e_range = np.random.uniform(0.0, 0.9, 10)
n_range = np.arange(1, 150 + 1).astype(int)

g_interpolated = sources.g(n_range, e_range)[np.argsort(e_range).argsort()]

N, E = np.meshgrid(n_range, e_range)

g_true = utils.peters_g(N, E)

[13]: difference = np.abs(g_true - g_interpolated)
print("The largest difference between the interpolated and true value is {:.2e}".
→˓format(np.max(difference)))
print("Whilst the average difference is {:.2e}".format(np.mean(difference)))

The largest difference between the interpolated and true value is 1.60e-09
Whilst the average difference is 6.13e-11

So the functions also give pretty much the same values. However, if you happen to have a lot of computing power and
time is not a factor for you then setting interpolate_g=False will give you more accurate results.

You should also consider that if you only have a couple of sources then the time saved by avoiding computing 𝑔(𝑛, 𝑒)
would actually be less than the time it takes to interpolate. So for small populations of sources we recommend testing
the runtime with interpolate_g=False to check whether it is faster.

Sensitivity Curve Interpolation

Finally, similar to the previous section, we offer the ability to interpolate the sensitivity curve. The only difference
is you can also pass sc_params to update the arguments that are passed to the sensitivity curve function. This pro-
vides increased speed for large samples of sources, timesteps and harmonics but will make little difference for smaller
collections of sources.

By default the SNR function (see below) will use the parameters in sc_params (e.g. the mission length or confusion
noise model) when computing SNRs.

2.2. Using the Source Class 13

LEGWORK

2.2.2 Strain and SNR calculations

Strain functions

The source class provides a convenient wrapper around the functions from the strain module and allows you to compute
either the strain or characteristic strain for any number of harmonics and any subset of the sources.

Let’s try this out with the same source class instance from earlier.

[14]: # compute h_c_n for every source for the first four harmonics
h_c_n4 = sources.get_h_c_n(harmonics=[1, 2, 3, 4])
print(h_c_n4)

[[2.46078236e-17 1.42420838e-16 1.07136176e-16 5.88129908e-17]
[1.06975755e-17 2.06768406e-16 5.27828885e-17 1.00156266e-17]
[7.47078867e-17 3.89440357e-16 3.17309365e-16 1.87919671e-16]
...
[1.74229531e-17 9.51883434e-17 7.48556894e-17 4.28667975e-17]
[1.67406319e-17 5.09680121e-18 9.66806812e-18 1.85106547e-17]
[2.67122069e-17 1.88443050e-16 1.20904130e-16 5.69491486e-17]]

Now imagine an (admittedly rather strange) scenario in which you only want to compute the strain for every other
source. This is pretty easy to do!

[15]: every_other = np.array([i % 2 == 0 for i in range(sources.n_sources)])

h_0_n = sources.get_h_0_n(harmonics=[1, 2, 3, 4], which_sources=every_other)
print("The shape of this strain array is {}".format(h_0_n.shape))
print("(since we compute the first 4 harmonics and only for every other source)")

The shape of this strain array is (750, 4)
(since we compute the first 4 harmonics and only for every other source)

This may seem a little contrived but we could also use this to isolate the circular sources and compute them separately
(since then we needn’t bother with any harmonic except 𝑛 = 2).

[16]: circular = sources.get_source_mask(circular=True)

h_c_n = sources.get_h_0_n(harmonics=2, which_sources=circular)
print("The shape of this characteristic strain array is {}".format(h_c_n.shape)),
print("(since we compute only the n=2 harmonic and only for circular sources)")

The shape of this characteristic strain array is (282, 1)
(since we compute only the n=2 harmonic and only for circular sources)

Signal-to-Noise Ratio

The snr module of LEGWORK contains four functions for calculating the SNR depending on whether a binary is sta-
tionary/evolving and circular/eccentric using various approximations. However, the source class takes cares of sending
the right binaries to the right functions and all you have to do is set the gw_lum_tol and stat_tol when instantiating
the class (see above) and then call legwork.source.Source.get_snr().

This splits the sources into (up to) 4 subsets and calculates their SNRs before recollecting them and storing the result
in source.snr.

Let’s try this out. Note that we run with verbose=True here so that you can see the size of subpopulation.

14 Chapter 2. Tutorials

LEGWORK

[17]: snr_4 = sources.get_snr(verbose=True)

Calculating SNR for 1500 sources
0 sources have already merged
1389 sources are stationary

268 sources are stationary and circular
1121 sources are stationary and eccentric

111 sources are evolving
14 sources are evolving and circular
97 sources are evolving and eccentric

We can also adjust the length of the LISA mission to see how this affects the SNR. It is also important in general
to update the sensitivity curve parameters for the interpolation so that the interpolated sensitivity curve matches the
updated mission length. LEGWORK handles this for get_snr as long as reinterpolate_sc=True.

[18]: snr_10 = sources.get_snr(t_obs=10 * u.yr, verbose=True)

Calculating SNR for 1500 sources
0 sources have already merged
1360 sources are stationary

263 sources are stationary and circular
1097 sources are stationary and eccentric

140 sources are evolving
19 sources are evolving and circular
121 sources are evolving and eccentric

Note that you can see that the number of stationary binaries has decreased slightly since some binaries may just be on
the cusp of no longer being stationary and extending the time means they change frequency enough to be labelled as
evolving. It could be interesting to do this to see how the number of detectable binaries changes.

[19]: n_detect_4 = len(snr_4[snr_4 > 7])
n_detect_10 = len(snr_10[snr_10 > 7])
print("{} binaries are detectable over 4 years".format(n_detect_4))
print("Whilst extending to a 10 year mission gives {}".format(n_detect_10))

621 binaries are detectable over 4 years
Whilst extending to a 10 year mission gives 621

Position-inclination-polarisation specfic sources

For some sources, you may already know the positions and this means that you can use a more specific SNR calculation
(see the derivations for more details) rather than an average. Note that since this SNR calculation also considers
frequency spreading due to doppler modulation from the detector orbit, the SNR will always be lower than in the fully
averaged case.

We can input this when instantiating the source. For positions we use the Skycoord Class from Astropy, which al-
lows you to specific the coordinates in any frame and it will automatically convert it to the necessary coordinates in
LEGWORK.

[20]: # redefine f_orb so all binaries are stationary (can't use position-specific snr for␣
→˓evolving sources)
specific_f_orb = 10**np.random.uniform(-5, -4, len(m_1)) * u.Hz
sources_specific = source.Source(m_1=m_1, m_2=m_2, f_orb=specific_f_orb, dist=dist,␣
→˓ecc=np.repeat(0.0, len(m_1)),

(continues on next page)

2.2. Using the Source Class 15

LEGWORK

(continued from previous page)

position=SkyCoord(lon=np.random.uniform(0, 2 * np.pi) *␣
→˓u.rad,

lat=np.random.uniform(-np.pi / 2, np.
→˓pi / 2) * u.rad,

distance=dist, frame=
→˓"heliocentrictrueecliptic"),

inclination=np.arcsin(np.random.uniform(-1, 1, len(m_
→˓1))) * u.rad,

polarisation=np.random.uniform(0, 2 * np.pi, len(m_1))␣
→˓* u.rad)
sources_specific.get_snr()

[20]: array([2.36226570e-01, 4.84705414e-03, 4.17744265e-01, ...,
1.15586765e-04, 1.73422646e-02, 1.40722564e-01])

[21]: sources_average = source.Source(m_1=m_1, m_2=m_2, f_orb=specific_f_orb,
dist=dist, ecc=np.repeat(0.0, len(m_1)))

sources_average.get_snr()

[21]: array([8.82139455e-01, 1.06499265e-02, 8.97087569e-01, ...,
2.64335535e-04, 2.68516364e-02, 3.72650765e-01])

Let’s plot the ratio of the SNR for the two cases using the visualisation module.

[22]: snr_ratio = sources_specific.snr / sources_average.snr
fig, ax = visualisation.plot_1D_dist(snr_ratio, bins="fd", xlabel="SNR (specific) /␣
→˓SNR(average)")

16 Chapter 2. Tutorials

LEGWORK

As you can see, the SNR for a specific source is always lower than for the average source. This is because the modulation
reduces the strain amplitude as the smearing in frequency reduces the amount of signal build up at the true source
frequency.

2.2.3 Visualisation

Although the visualisation model gives more freedom in honing various aspects of your plots, for general analysis the
source class has two functions to quickly create plots to investigate distributions.

Parameters Distributions

The first function is legwork.source.Source.plot_source_variables() which can create either 1D or 2D dis-
tributions of any subpopulation of sources.

Let’s take it for a spin with a collection of stationary binaries.

[23]: # create a random collection of sources
n_values = 15000
m_1 = np.random.uniform(0, 10, n_values) * u.Msun
m_2 = np.random.uniform(0, 10, n_values) * u.Msun
dist = np.random.normal(8, 1.5, n_values) * u.kpc
f_orb = 10**(np.random.normal(-5, 0.5, n_values)) * u.Hz
ecc = 1 - np.random.power(3, n_values)

(continues on next page)

2.2. Using the Source Class 17

LEGWORK

(continued from previous page)

sources = source.Source(m_1=m_1, m_2=m_2, ecc=ecc, dist=dist, f_orb=f_orb)

This function will let you plot any of several parameters (listed in the table below) and work out the units for the axes
labels automatically based on the values in the source class.

Parameter Label
Primary Mass m_1
Secondary Mass m_2
Chirp Mass m_c
Eccentricity ecc
Distance dist
Orbital Frequency f_orb
Gravitational Wave Frequency f_GW
Semi-major Axis a
Signal-to-noise Ratio snr

We can start simple and just plot the orbital frequency distribution for all sources. For a 1D distribution we only need
to use xstr and can leave ystr as None. The various keyword arguments are passed to legwork.visualisation.
plot_1D_dist() and legwork.visualisation.plot_2D_dist(), for more info check out the Visualisation tuto-
rial!

[24]: fig, ax = sources.plot_source_variables(xstr="f_orb", disttype="kde", log_scale=True,␣
→˓linewidth=3)

18 Chapter 2. Tutorials

LEGWORK

But we could also try to see how the detectable population is different from the entire population. Let’s create two
frequency KDEs, one for the detectable binaries and another for all of them. For this we will use the which_sources
parameter and pass a mask on the SNR.

[25]: # calculate the SNR
snr = sources.get_snr(verbose=True)

mask detectable binaries
detectable = snr > 7

plot all binaries
fig, ax = sources.plot_source_variables(xstr="f_orb", disttype="kde", log_scale=True,␣
→˓linewidth=3,

show=False, label="all binaries")

plot all binaries
fig, ax = sources.plot_source_variables(xstr="f_orb", disttype="kde", log_scale=True,␣
→˓linewidth=3, fig=fig,

ax=ax, which_sources=detectable, label=
→˓"detectable binaries",

show=False)

ax.legend()

(continues on next page)

2.2. Using the Source Class 19

LEGWORK

(continued from previous page)

plt.show()

Calculating SNR for 15000 sources
0 sources have already merged
15000 sources are stationary

2819 sources are stationary and circular
12181 sources are stationary and eccentric

Here’s we can see that the distribution is shifted to higher frequencies for detectable binaries which makes sense since
these are easier to detect.

Sources on the Sensitivity Curve

The other function is legwork.Source.source.plot_sources_on_sc() which plots all sources on the sensitivity
curve.

Note: This is currently only implemented for stationary binaries. We are working on adding the same functionality
for evolving binaries.

Here we set snr_cutoff=7 so that only binaries with SNR > 7 are plotted and switch the disttype to a KDE density
plot. The circular binaries are plotted in blue and the eccentric binaries in orange.

20 Chapter 2. Tutorials

LEGWORK

[26]: fig, ax = sources.plot_sources_on_sc(snr_cutoff=7, disttype="kde")

That’s all for this tutorial, be sure to check out the other ones to find other ways to keep your feet up and let us do the
LEGWORK!

Note: This tutorial was generated from a Jupyter notebook that can be downloaded here. If you’d like to reproduce the
results in the notebook, or make changes to the code, we recommend downloading this notebook and running it with
Jupyter as certain cells (mostly those that change plot styles) are excluded from the tutorials.

2.3 Strains

In this tutorial, we explain how to use the functions in the strain module. We also take a look at the relevance of higher
harmonics and how to use the output.

Let’s import the strain functions and also some other common stuff.

[2]: import legwork.strain as strain

import numpy as np
import astropy.units as u
import matplotlib.pyplot as plt

2.3. Strains 21

https://github.com/TeamLEGWORK/LEGWORK/tree/main/docs/notebooks/Strains.ipynb

LEGWORK

2.3.1 Introduction to function usage

We will focus mainly on the strain amplitude function, legwork.strain.h_0_n() but legwork.strain.h_c_n()
works identically except it computes the characteristic strain amplitude rather than the plain old strain amplitude.

It is important to keep in mind that the shape of the output of these functions will always be (number of sources,
number of timesteps, number of harmonics). Therefore, even if you only supply a single source, with a single
timestep and ask for a single harmonic then the function will still supply a 3D array of shape (1, 1, 1).

[4]: # example with single source
h_0_2 = strain.h_0_n(m_c=10 * u.Msun, f_orb=1e-3 * u.Hz, ecc=0.1, n=2, dist=8 * u.kpc)
print("The strain array that is returned is {} which has a shape of {}".format(h_0_2, h_
→˓0_2.shape))

The strain array that is returned is [[[9.5482392e-21]]] which has a shape of (1, 1, 1)

Let’s repeat that exercise but for many sources and many harmonics just to emphasise what the shape looks like. First
we can simply create 100 random sources using numpy.

[5]: n_sources = 100
m_c = np.random.uniform(0, 10, n_sources) * u.Msun
dist = np.random.uniform(0, 8, n_sources) * u.kpc
f_orb_i = 10**(np.random.uniform(-5, 0, n_sources)) * u.Hz

Now let’s say that we want to know the strain of each source at linearly spaced timesteps between the initial frequency
and twice the initial frequency. In this case let’s do 5 timesteps and so we need to define the eccentricity and frequency
at these times (let’s just do circular sources for simplicity).

[6]: n_times = 5
f_orb = np.array([np.linspace(f.value, f.value * 2, n_times) for f in f_orb_i]) * u.Hz
ecc = np.random.uniform(0, 1, (n_sources, n_times))

And perhaps we only care for the first 42 harmonics, so let’s define that quickly.

[7]: n_harmonics = 42
harmonics = np.arange(1, n_harmonics + 1).astype(int)

Then all we need to do to calculate the strain is this

[8]: # calculate the strain
h_0_n = strain.h_0_n(m_c=m_c, f_orb=f_orb, ecc=ecc, n=harmonics, dist=dist)
print("The shape of this array is {}".format(h_0_n.shape))
print("This makes sense since n_sources is {}, n_times is {}".format(n_sources, n_times),

"and n_harmonics is {}".format(n_harmonics))

The shape of this array is (100, 5, 42)
This makes sense since n_sources is 100, n_times is 5 and n_harmonics is 42

Then we can access the strain of a particular source and harmonics by using Python slices/indices like so

[9]: ind_source = np.random.choice(np.arange(n_sources).astype(int))
ind_times = np.random.choice(np.arange(n_times).astype(int))
ind_harmonic = np.random.choice(np.arange(n_harmonics).astype(int))

chosen_strain = h_0_n[ind_source, ind_times, ind_harmonic]

(continues on next page)

22 Chapter 2. Tutorials

LEGWORK

(continued from previous page)

print("The strain of source {} at timestep {} and at n = {}".format(ind_source, ind_
→˓times, ind_harmonic + 1),

"is {:1.2e}".format(chosen_strain))

The strain of source 51 at timestep 4 and at n = 33 is 7.77e-20

Additionally, we may only be interested in the total strain for each source at each timestep rather than keeping track of
the strain in each harmonic. In this case we simply need to sum over the correct axis to get the total.

[10]: h_0 = h_0_n.sum(axis=2)
print("The number of sources is {} and the number of times is {},".format(n_sources, n_
→˓times),

"hence the shape of `h_0` is {}".format(h_0.shape))

The number of sources is 100 and the number of times is 5, hence the shape of `h_0` is␣
→˓(100, 5)

2.3.2 Some example uses

Now that we’ve covered how the functions work, let’s explore some examples of how we can use them!

Circular binaries: effect of mass

For circular binaries only the 𝑛 = 2 harmonic has any signal and hence we can plot how the strains change with orbital
frequency (assuming a fixed distance and chirp mass)

[11]: # pick some fixed values and a range for frequency
m_c = 10 * u.Msun
f_orb = np.logspace(-5, 0, 100) * u.Hz
dist = 8 * u.kpc
ecc = 0.0

[12]: # compute second harmonic for each and flatten to reduce to 1D array
h_0_2 = strain.h_0_n(m_c=m_c, f_orb=f_orb, ecc=ecc, n=2, dist=dist).flatten()
h_c_2 = strain.h_c_n(m_c=m_c, f_orb=f_orb, ecc=ecc, n=2, dist=dist).flatten()

[13]: # add the two lines
plt.loglog(f_orb.value, h_0_2, lw=4, label="Strain")
plt.loglog(f_orb.value, h_c_2, lw=4, label="Characteristic Strain")

label the axes
plt.xlabel("Orbital Frequency")
plt.ylabel("Amplitude")

show a legend and the plot
plt.legend()
plt.show()

2.3. Strains 23

LEGWORK

So you can see that the strain increases with frequency whilst the characteristic strain actually decreases.

Eccentric binaries: harmonic distribution

It’s also interesting to look at how the strain is spread over multiple harmonics as we increase eccentricity. Let’s take
a look at how the strength of the 𝑛 = 2, 3, 4 harmonics change with eccentricity (with fixed frequency, chirp mass and
distance).

[14]: # range for eccentricities (limited to 0.9 to reduce number harmonics needed)
ecc = np.linspace(0.01, 0.9, 1000)

fixed values
m_c = np.ones_like(ecc) * 10 * u.Msun
f_orb = np.ones_like(ecc) * 1e-3 * u.Hz
dist = np.ones_like(ecc) * 8 * u.kpc

[15]: # calculate the strain for the first 500 harmonics
ecc_plot_h_0_n = strain.h_0_n(m_c=m_c, f_orb=f_orb, ecc=ecc, n=np.arange(1, 500 + 1).
→˓astype(int), dist=dist)

[16]: # add lines for the n = 2,3,4 harmonics
for n in [2, 3, 4]:

plt.plot(ecc, ecc_plot_h_0_n[:, 0, n - 1], label=r"$n={{{}}}$".format(n), lw=4)

label the axes
(continues on next page)

24 Chapter 2. Tutorials

LEGWORK

(continued from previous page)

plt.xlabel("Eccentricity")
plt.ylabel("Strain Amplitude")

use a log scale for strain
plt.yscale("log")

limit axes
plt.xlim(0, 0.9)
plt.ylim(1e-22, 1.2e-20)

show a legend and the plot
plt.legend()
plt.show()

So here we can see that the strength of the 𝑛 = 2 harmonic declines as binaries become more eccentric, such that the
𝑛 = 3 harmonic actually becomes stronger than the 𝑛 = 2 harmonic around 𝑒 ≈ 0.33. This repeats for 𝑛 = 4 and
onwards as each harmonic dominates at higher eccentricities.

But what about the total strain? This is just single harmonics, let’s look at how the total varies too!

[17]: # sum the strain over all harmonics for each binary
h_0 = ecc_plot_h_0_n.sum(axis=2).flatten()

[18]: fig, ax = plt.subplots()

plot the total
ax.plot(ecc, h_0, label="Total", lw=4)

(continues on next page)

2.3. Strains 25

LEGWORK

(continued from previous page)

add an arrow and label with the change in strain
e_label = 0.2
ax.annotate("", xy=(e_label, h_0.min()), xytext=(e_label, h_0.max()),

arrowprops=dict(arrowstyle="<|-|>", linestyle="dotted", ec="grey", fc="grey
→˓"))
ax.annotate("Factor of {:1.0f} difference".format(h_0.max() / h_0.min()),

xy=(e_label, h_0.min() + (h_0.max() - h_0.min()) / 2), rotation=90,
ha="center", va="center", bbox=dict(boxstyle="round", fc="white", ec="none"),

→˓ fontsize=18)

label the axes
ax.set_xlabel("Eccentricity")
ax.set_ylabel("Amplitude")

show a legend and the plot
ax.legend()
ax.set_xlim(0, 0.9)

plt.show()

Here we can see that higher eccentricity can dramatically increase the strain. Note that this may not necessarily increase
the detectability of the binaries however, since the strain will be shifted to higher frequencies and hence may occur over
a more noisy part of the LISA sensitivity curve.

26 Chapter 2. Tutorials

LEGWORK

Note: This tutorial was generated from a Jupyter notebook that can be downloaded here. If you’d like to reproduce the
results in the notebook, or make changes to the code, we recommend downloading this notebook and running it with
Jupyter as certain cells (mostly those that change plot styles) are excluded from the tutorials.

2.4 Binary evolution

In this tutorial, we take a look at how to evolve binaries with LEGWORK and get the most out of the functions in the evol
module.

Let’s import the evolution functions and also some other common stuff.

[2]: from legwork import evol, utils

import numpy as np
import astropy.units as u
from astropy.visualization import quantity_support
quantity_support()
import matplotlib.pyplot as plt

2.4.1 Calculating merger times

When it comes to gravitational wave sources, one of the first questions that comes to mind is: when is this thing
going to merge? Well that’s exactly the question that legwork.evol.get_t_merge_circ() and legwork.evol.
get_t_merge_ecc() can answer.

We’ll focus primarily on the eccentric function since the circular function is just a special case and works exactly the
same way.

Flexible input

This function requires the eccentricity as well as information about the masses and separation of the binary. This is
done flexibly such that:

• you can either enter the individual masses, m_1, m_2, or the beta constant from Peters (1964)

• you can either enter the semi-major axis a_i or the orbital frequency f_orb_i

In these cases beta and a_i take precedence.

[4]: # pick some values
ecc_i = 0.1
m_1 = 7 * u.Msun
m_2 = 42 * u.Msun
f_orb_i = 1e-3 * u.Hz

calculate other params
beta = utils.beta(m_1=m_1, m_2=m_2)
a_i = utils.get_a_from_f_orb(f_orb=f_orb_i, m_1=m_1, m_2=m_2)

compute with individual masses and frequency
(continues on next page)

2.4. Binary evolution 27

https://github.com/TeamLEGWORK/LEGWORK/tree/main/docs/notebooks/Evolution.ipynb

LEGWORK

(continued from previous page)

t_merge = evol.get_t_merge_ecc(ecc_i=ecc_i, m_1=m_1, m_2=m_2, f_orb_i=f_orb_i)

compute with beta and semi-major axis
t_merge_alt = evol.get_t_merge_ecc(ecc_i=ecc_i, beta=beta, a_i=a_i)

check you get the same result
print(t_merge == t_merge_alt)

True

Approximations

These functions are based directly on the equations from Peters (1964) and these consist of four cases which each use
a different equation from Peters:

Case Peters (1964) Equation EccentricityRange
Exactly Circular Eq. 5.10 e = 0.0
Small Eccentricity Approximation Eq. after 5.14 e < small_e_tol
General Case Eq. 5.14 small_e_tol <= e <= large_e_tol
Large Eccentricity Approximation 2nd Eq. after 5.14 large_e_tol < e

The ranges in which the different functions are used are determined by small_e_tol and large_e_tol which are
0.01 and 0.99 by default. Let’s take a look at how changing these can affect our results.

[6]: # create random binaries
e_range = np.linspace(0.0, 0.9999, 10000)
m_1 = np.repeat(1, len(e_range)) * u.Msun
m_2 = np.repeat(1, len(e_range)) * u.Msun
f_orb_i = np.repeat(1e-5, len(e_range)) * u.Hz

calculate merger time using defaults
t_merge = evol.get_t_merge_ecc(ecc_i=e_range, m_1=m_1, m_2=m_2, f_orb_i=f_orb_i)

calculate two examples with different tolerances
t_merge_small_ex = evol.get_t_merge_ecc(ecc_i=e_range, m_1=m_1, m_2=m_2, f_orb_i=f_orb_i,
→˓ small_e_tol=0.25)
t_merge_large_ex = evol.get_t_merge_ecc(ecc_i=e_range, m_1=m_1, m_2=m_2, f_orb_i=f_orb_i,
→˓ large_e_tol=0.75)

create a figure
fig, ax = plt.subplots(figsize=(15, 8))

plot the default as an area
ax.fill_between(e_range, np.zeros_like(t_merge), t_merge, label="Default", alpha=0.2)

plot the examples with dashed lines
ax.plot(e_range, t_merge_small_ex, label=r"small_e_tol = 0.25", color="tab:red",␣
→˓linestyle="--")
ax.plot(e_range, t_merge_large_ex, label=r"large_e_tol = 0.75", color="tab:purple",␣
→˓linestyle="--")

(continues on next page)

28 Chapter 2. Tutorials

LEGWORK

(continued from previous page)

ax.set_xlabel("Eccentricity")
ax.set_ylabel("Merger Time [{0:latex}]".format(t_merge.unit))

ax.legend()

plt.show()

Here we can see how adjusting the tolerances can result in drastic changes to the merger times. We leave it to you to
determine your balance of runtime and accuracy!

2.4.2 Evolving binaries

Sometimes you need more information than simply “when will it merge” and may instead want to know how various
binary parameters evolve over time. This is where legwork.evol.evol_circ() and legwork.evol.evol_ecc()
can be used to find the evolution of the binary separation, frequency and eccentricity over time.

Flexible output

The same principles as above (with the flexible input options of the masses and separation) apply. In addition, we make
the output flexible here too. When evolving a binary, the final evolution that is returned can contain any of:

• a_evol = “a”: semi-major axis evolution

• f_orb_evol = “f_orb”: orbital frequency evolution

• f_GW_evol = “f_GW”: gravitational wave frequency evolution

• timesteps = “timesteps”: timesteps corresponding to values in evolutions

• ecc_evol = “ecc”: eccentricity evolution (evol_ecc() only)

2.4. Binary evolution 29

LEGWORK

You can choose which variables you want to be outputted and their order by including the strings listed above (after the
equals signs) in output_vars. Let’s try this in practice.

[7]: m_1 = 7 * u.Msun
m_2 = 42 * u.Msun
f_orb_i = 1e-3 * u.Hz

we could just ask for a_evol
a_evol = evol.evol_circ(m_1=m_1, m_2=m_2, f_orb_i=f_orb_i, output_vars="a")

or timesteps as well
a_evol, timesteps = evol.evol_circ(m_1=m_1, m_2=m_2, f_orb_i=f_orb_i, output_vars=["a",
→˓"timesteps"])

Timesteps

LEGWORK also allows you to determine the number and spacing of the timesteps to report about the evolution.

There are three relevant parameters for this:

• t_evol: the amount of time to evolve each binary for (this will default to the merger time)

• n_step: the number of linearly spaced steps to take between 0 and t_evol

• timesteps: an exact custom array of timesteps to use in place of the above parameters

Lets try evolving a binary until its merger and adjusting the number of timesteps

[8]: m_1 = 7 * u.Msun
m_2 = 42 * u.Msun
f_orb_i = 1e-3 * u.Hz

work out the merger time
t_merge = evol.get_t_merge_circ(m_1=m_1, m_2=m_2, f_orb_i=f_orb_i).to(u.yr)

evolve with only 10 timesteps
f_orb_evol_coarse, t_coarse = evol.evol_circ(t_evol=t_merge, n_step=10, m_1=m_1, m_2=m_2,
→˓ f_orb_i=f_orb_i,

output_vars=["f_orb", "timesteps"])

same thing but with 10000!
f_orb_evol_fine, t_fine = evol.evol_circ(t_evol=t_merge, n_step=10000, m_1=m_1, m_2=m_2,␣
→˓f_orb_i=f_orb_i,

output_vars=["f_orb", "timesteps"])

[9]: fig, ax = plt.subplots()

ax.plot(t_fine, f_orb_evol_fine, label="Fine evolution")
ax.scatter(t_coarse, f_orb_evol_coarse, color="tab:purple", zorder=3, s=100, label=
→˓"Coarse Evolution")

ax.set_xlabel("Time [{:latex}]".format(t_fine.unit))
ax.set_ylabel("Orbital Frequency [{:latex}]".format(f_orb_evol_fine.unit))

ax.set_yscale("log")
(continues on next page)

30 Chapter 2. Tutorials

LEGWORK

(continued from previous page)

ax.legend()

plt.show()

We can see here that we capture most of the evolution well with few timesteps. . . until the binary approaches its merger.
Let’s try still taking few timesteps but spacing them such that there are more at the end.

[10]: m_1 = 7 * u.Msun
m_2 = 42 * u.Msun
f_orb_i = 1e-3 * u.Hz

work out the merger time
t_merge = evol.get_t_merge_circ(m_1=m_1, m_2=m_2, f_orb_i=f_orb_i).to(u.yr).value

do a sort of lookback time thing
t_coarse = (t_merge - np.logspace(0, np.log10(t_merge), 10))[::-1] * u.yr
t_coarse[-1] = t_merge * u.yr
f_orb_evol_coarse, t_coarse = evol.evol_circ(timesteps=t_coarse, m_1=m_1, m_2=m_2, f_orb_
→˓i=f_orb_i,

output_vars=["f_orb", "timesteps"])

evolve until merger with a bunch of timesteps
f_orb_evol_fine, t_fine = evol.evol_circ(t_evol=t_merge * u.yr, n_step=10000, m_1=m_1, m_
→˓2=m_2,

f_orb_i=f_orb_i, output_vars=["f_orb",
(continues on next page)

2.4. Binary evolution 31

LEGWORK

(continued from previous page)

→˓"timesteps"])

[11]: fig, ax = plt.subplots()

ax.plot(t_fine, f_orb_evol_fine, label="Fine evolution")
ax.scatter(t_coarse, f_orb_evol_coarse, color="tab:purple", zorder=3, s=100, label=
→˓"Coarse Evolution")

ax.set_xlabel("Time [{:latex}]".format(t_fine.unit))
ax.set_ylabel("Orbital Frequency [{:latex}]".format(f_orb_evol_fine.unit))

ax.set_yscale("log")

ax.legend()

plt.show()

And now we can use the same number of timesteps yet resolve the full evolution quite nicely, neat!

Note: It is important to note that the time steps that you provide only determine the times that are outputted, internally
the functions will determine the time steps necessary to accurately reflect the evolution.

32 Chapter 2. Tutorials

LEGWORK

2.4.3 Examples uses

Hopefully by this point you’re comfortable with the use of the evol module and want to take it for a spin! Let’s do just
that.

As an example, let’s evolve a series of random binaries for a fixed period of time and see how their eccentricities and
frequencies change.

[12]: # create some random binaries with the same masses
n_binaries = 2500
m_1 = np.repeat(15, n_binaries) * u.Msun
m_2 = np.repeat(15, n_binaries) * m_1
f_orb_i = 10**(np.random.uniform(-6, -3, n_binaries)) * u.Hz
ecc_i = np.random.uniform(0, 0.9, n_binaries)

set up timesteps
timesteps = (np.logspace(-2, 7, 1000) * u.yr).to(u.Myr)

check which binaries will merge during that time
t_merge = evol.get_t_merge_ecc(ecc_i=ecc_i, m_1=m_1, m_2=m_2, f_orb_i=f_orb_i)
merged = t_merge <= timesteps[-1]
inspiral = np.logical_not(merged)

evolve the binaries that won't merge
ecc_evol, f_orb_evol = evol.evol_ecc(ecc_i=ecc_i[inspiral], m_1=m_1[inspiral], m_2=m_
→˓2[inspiral],

f_orb_i=f_orb_i[inspiral], timesteps=timesteps, t_
→˓before=10 * u.yr)

print("Completed evolution of {} binaries".format(n_binaries), end="")
print(r" for {:1.0f} {}".format(timesteps[-1].value, timesteps.unit))

Completed evolution of 2500 binaries for 10 Myr

[13]: # create a plot
fig, ax = plt.subplots()

check which binaries merged
print("{:1.1f}% of binaries merged".format(len(ecc_i[merged]) / n_binaries * 100))

plot the merged binaries as scatter points
ax.scatter(f_orb_i[merged], ecc_i[merged], label="Merged binaries", s=10)

plot the inspiraling line by connecting lines from their start to their end
for i in range(len(ecc_evol)):

label = "Inspiraling binaries" if i == 0 else ""
mask = f_orb_evol[i] != 1e2 * u.Hz
ax.plot(f_orb_evol[i][mask], ecc_evol[i][mask], color="tab:purple", lw=3,␣

→˓label=label)

ax.legend(loc="upper right", framealpha=0.95, markerscale=6)

ax.set_xscale("log")

(continues on next page)

2.4. Binary evolution 33

LEGWORK

(continued from previous page)

ax.set_xlabel("Orbital Frequency [{:latex}]".format(f_orb_evol.unit))
ax.set_ylabel("Eccentricity")

plt.show()

59.8% of binaries merged

We can see here that either higher eccentricity or high frequency can speed up a merger. We also get a sense of how
the parameters evolve. Fun!

That concludes this tutorial on binary evolution using the LEGWORK package. Be sure to check out the other tutorials
to learn more about how LEGWORK can do the legwork for you!

Note: This tutorial was generated from a Jupyter notebook that can be downloaded here. If you’d like to reproduce the
results in the notebook, or make changes to the code, we recommend downloading this notebook and running it with
Jupyter as certain cells (mostly those that change plot styles) are excluded from the tutorials.

34 Chapter 2. Tutorials

https://github.com/TeamLEGWORK/LEGWORK/tree/main/docs/notebooks/Visualisation.ipynb

LEGWORK

2.5 Visualisation

In this tutorial, we explore how to use the various functions in the visualisation module of LEGWORK. The visualisation
module is designed to make it quick and easy to plot various distributions of a collection of gravitational wave sources
as well as show them on the LISA sensitivity curve.

2.5.1 Setup

First we need to import legwork and some other standard stuff.

[3]: import legwork.visualisation as vis
from legwork import source, psd

import numpy as np
import astropy.units as u
import astropy.constants as const
import matplotlib.pyplot as plt
from matplotlib.colors import TwoSlopeNorm

2.5.2 Plotting parameter distributions

To start, we can explore how we can use the module to investigate distributions of parameters.

1D distributions

The first function we can take a look at is legwork.visualisation.plot_1D_dist(), which is essentially a wrap-
per over matplotlib.pyplot.hist(), seaborn.kdeplot() and seaborn.ecdfplot() such that you can dynam-
ically switch between these types of distributions with a single function call. At its most basic level, you can use the
function to examine a histogram of some distribution.

[5]: # create a random normal variable
x = np.random.normal(size=10000)

[6]: # plot with all of the default settings
fig, ax = vis.plot_1D_dist(x=x)

2.5. Visualisation 35

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.hist.html#matplotlib.pyplot.hist
https://seaborn.pydata.org/generated/seaborn.kdeplot.html#seaborn.kdeplot
https://seaborn.pydata.org/generated/seaborn.ecdfplot.html#seaborn.ecdfplot

LEGWORK

Nice and simple! But this plot isn’t particularly informative so we can also specify various plot parameters as part of
the function. Let’s add some axis labels and change the x limits to ensure symmetry.

[7]: fig, ax = vis.plot_1D_dist(x=x, xlabel="Our random variable", ylabel="Density", xlim=(-4,
→˓ 4))

36 Chapter 2. Tutorials

LEGWORK

Well that’s much better! Perhaps instead of immediately showing the plot, it could be good to add some other features
first. We can do this by specifying show=False and then using the returned figure and axis. Let’s put this into practice
by adding a line indicating the mean of the distribution which should be approximately 0.

[8]: # create the histogram but don't show it
fig, ax = vis.plot_1D_dist(x=x, xlabel="Our random variable", ylabel="Density",

xlim=(-4, 4), show=False)

add a line and annotation
ax.axvline(np.mean(x), linestyle="dotted", color="black")
ax.annotate("mean = {0:1.2f}".format(x.mean()), xy=(np.mean(x), 0.15),

rotation=90, ha="center", va="center", fontsize=20,
bbox=dict(boxstyle="round", fc="tab:blue", ec="none"))

show the figure
plt.show()

2.5. Visualisation 37

LEGWORK

The histogram seems to be working nicely. However, that might not be the only way you want to show the distribution.
From here we can explore how we can change the distribution with various arguments. Let’s add a KDE (kernel density
estimator) in addition to the histogram.

[9]: # create a larger sample for a smoother line
x = np.random.normal(size=100000)

add the KDE
fig, ax = vis.plot_1D_dist(x=x, disttype="kde", show=False, color="skyblue", label="kde",
→˓ linewidth=5)
fig, ax = vis.plot_1D_dist(x=x, xlabel="Our random variable", ylabel="Density", xlim=(-4,
→˓ 4),

label="histogram", fig=fig, ax=ax, show=False)

add a line and annotation
ax.axvline(np.mean(x), linestyle="dotted", color="black")
ax.annotate("mean = {0:1.2f}".format(x.mean()), xy=(np.mean(x), 0.15), rotation=90, ha=
→˓"center", va="center",

fontsize=20, bbox=dict(boxstyle="round", fc="tab:blue", ec="none"))

ax.legend()

show the figure
plt.show()

38 Chapter 2. Tutorials

LEGWORK

More things you can try out
There’s only so much we can show in a tutorial but this function can do much more. Here are some things you may
like to try out.

• Explore the different disttypes, you can make an empirical cumulative distribution function with
disttype=ecdf.

• Try changing the number of bins in the histogram (bins=10) or adjusting the bandwidth for the kde
(bw_adjust=0.5)

• Plot things on a log scale with (log=True for histograms or log_scale=(True, False) for KDE/ECDFs)

2D distributions

This is very similar to the previous section except now you can make 2D distributions of either scatter plots or
density distributions (since legwork.visualisation.plot_2D_dist() is a wrapper over matplotlib.pyplot.
scatter() and seaborn.kdeplot()). Let’s make a simple scatter plot first.

[10]: # create two random normal variables
n_vals = 10000
x = np.random.normal(size=n_vals)
y = np.random.normal(size=n_vals)

[11]: # create a square figure
fig, ax = plt.subplots(figsize=(10, 10))

(continues on next page)

2.5. Visualisation 39

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.scatter.html#matplotlib.pyplot.scatter
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.scatter.html#matplotlib.pyplot.scatter
https://seaborn.pydata.org/generated/seaborn.kdeplot.html#seaborn.kdeplot

LEGWORK

(continued from previous page)

add the scatter plot
fig, ax = vis.plot_2D_dist(x=x, y=y, fig=fig, ax=ax)

Again, we can make this much better by adding axis labels. But additionally the centre is rather oversaturated with
points so it is hard to discern the distribution so let’s try decreasing the point size too (to scatter_s=0.5).

[12]: # create a square figure
fig, ax = plt.subplots(figsize=(10, 10))

add the scatter plot
fig, ax = vis.plot_2D_dist(x=x, y=y, fig=fig, ax=ax, xlim=(-4.5, 4.5), ylim=(-4.5, 4.5),

xlabel="A random normal variable", ylabel="Another random␣
→˓normal variable", scatter_s=0.5)

40 Chapter 2. Tutorials

LEGWORK

Well perhaps the centre is better. . . but now it is difficult to see the outliers! This is where the KDE density plot could
really come in handy. So we can switch to disttype=kde instead.

[13]: # create a square figure
fig, ax = plt.subplots(figsize=(10, 10))

add the scatter plot
fig, ax = vis.plot_2D_dist(x=x, y=y, fig=fig, ax=ax, disttype="kde", fill=True, xlim=(-4.
→˓5, 4.5), ylim=(-4.5, 4.5),

xlabel="A random normal variable", ylabel="Another random␣
→˓normal variable")

2.5. Visualisation 41

LEGWORK

Well that looks rather cool! However, we’ve added another issue. . . now we can’t see any of the outliers as this density
plot only goes down to the last 5% (you can adjust this with thresh=0.01 for example)! So why don’t we also add the
scatter plot so the outliers are still present.

[14]: # create a square figure
fig, ax = plt.subplots(figsize=(10, 10))

fig, ax = vis.plot_2D_dist(x=x, y=y, fig=fig, ax=ax, show=False, label="Outliers (bottom␣
→˓5%)", color="lightsteelblue")
fig, ax = vis.plot_2D_dist(x=x, y=y, fig=fig, ax=ax, disttype="kde", fill=True, xlim=(-4.
→˓5, 4.5), ylim=(-4.5, 4.5),

show=False, xlabel="A random normal variable", ylabel=
→˓"Another random normal variable")

(continues on next page)

42 Chapter 2. Tutorials

LEGWORK

(continued from previous page)

add legend with information on outliers
ax.legend(loc="upper left", handletextpad=0.0, fontsize=15)
plt.show()

2.5. Visualisation 43

LEGWORK

Plotting distributions directly from the Source class

You may be thinking that all of those various options are rather a lot of work and perhaps you’d rather just immediately
see the distribution of interesting source parameters. Have no fear, here is also a wrapper to help automatically plot
and generate axis labels for plots of source parameters! For example, we can plot the chirp mass distribution like so:

[15]: # create a random collection of sources
n_values = 1000
m_1 = np.random.uniform(0, 10, n_values) * u.Msun
m_2 = np.random.uniform(0, 10, n_values) * u.Msun
dist = np.random.uniform(0, 30, n_values) * u.kpc
f_orb = 10**(np.random.uniform(-5, -2, n_values)) * u.Hz
ecc = np.random.uniform(0.0, 0.2, n_values)

sources = source.Source(m_1=m_1, m_2=m_2, ecc=ecc, dist=dist, f_orb=f_orb, interpolate_
→˓g=False)

[16]: # create a histogram of the chirp mass
fig, ax = sources.plot_source_variables(xstr="m_c")

We could have done this for any of the variables, see the documentation legwork.source.Source.
plot_source_variables() for a full list of parameters you can plot. Also, note that the axis labels are auto-generated
based on the units of the variable. For example, let’s change the unit of the chirp mass to see how it changes the axis
labels.

[17]: # convert chirp mass to kilograms using astropy.units
(continues on next page)

44 Chapter 2. Tutorials

LEGWORK

(continued from previous page)

sources.m_c = sources.m_c.to(u.kg)

plot the chirp mass using exactly the same code as before
fig, ax = sources.plot_source_variables(xstr="m_c")

You can also supply two variables and get a 2D distribution instead. Let’s compare the orbital frequency and signal-
to-noise ratio (which we need to compute first!)

[18]: # compute the SNR (verbosely so you can see what types of sources we have)
snr = sources.get_snr(verbose=True)

Calculating SNR for 1000 sources
0 sources have already merged
957 sources are stationary

322 sources are stationary and circular
635 sources are stationary and eccentric

43 sources are evolving
11 sources are evolving and circular
32 sources are evolving and eccentric

[19]: fig, ax = sources.plot_source_variables(xstr="f_orb", ystr="snr", disttype="kde", log_
→˓scale=(True, True))

2.5. Visualisation 45

LEGWORK

Weighted Samples

What if you prefer one source over the other?? LEGWORK handles this too! Just set the weights in the source and they’ll
be used in all histograms and KDEs and scatter plots will have different point sizes

[20]: weights = np.random.uniform(0, 10, n_values)
sources.weights = weights

[21]: sources.plot_source_variables(xstr="m_1", ystr="m_2")

46 Chapter 2. Tutorials

LEGWORK

[21]: (<Figure size 864x504 with 1 Axes>,
<AxesSubplot:xlabel='Primary Mass, m_1 [$\\mathrm{M_{\\odot}}$]', ylabel='Secondary␣
→˓Mass, m_2 [$\\mathrm{M_{\\odot}}$]'>)

2.5.3 Plot sensitivity curves

LISA curve

We also add functionality to plot the LISA sensitivity curve. Creating a basic sensitivity curve is as simple as follows.
By default it will plot between 10−5 < 𝑓/Hz < 1, with a purple line (the purple matches well with the matplotlib
matplotlib.pyplot.plasma() colormap) and transparent shading below.

[22]: fig, ax = vis.plot_sensitivity_curve()

2.5. Visualisation 47

LEGWORK

For the default sensitivity curve we plot the ASD,
√︀
𝑆n(𝑓), but it is also possible to plot the characteristic strain,√︀

𝑓𝑆n(𝑓), instead. As a demonstration, let’s also adjust the frequency range to ignore low frequencies.

[23]: frequency_range = frequency_range=np.logspace(-4, 0, 1000) * u.Hz
fig, ax = vis.plot_sensitivity_curve(frequency_range=frequency_range, y_quantity="h_c")

48 Chapter 2. Tutorials

LEGWORK

It is also possible to adjust the sensitivity curve by changing the mission length, transfer function approximation and
confusion noise. For this plot we set the color=None so that it picks default matplotlib colours and remove the fill for
clarity.

[24]: # default settings (keep fill for this one)
fig, ax = vis.plot_sensitivity_curve(label="default", fill=True, show=False, color=None)

approximate the LISA transfer function
fig, ax = vis.plot_sensitivity_curve(approximate_R=True, color=None, label=r"approxmiate
→˓\mathcal{R}",

fill=False, fig=fig, ax=ax, show=False)

remove all confusion noise
fig, ax = vis.plot_sensitivity_curve(confusion_noise=None, color=None,label=r"No␣
→˓confusion noise",

fill=False, fig=fig, ax=ax, show=False)

shorten the mission length (increases confusion noise)
fig, ax = vis.plot_sensitivity_curve(t_obs=0.5 * u.yr, color=None, label=r"$T_{\rm obs}␣
→˓= 0.5 \,\rm{yr}$",

fill=False, fig=fig, ax=ax, show=False)

ax.legend()

plt.show()

2.5. Visualisation 49

LEGWORK

Alternate instruments

We also support the use of other sensitivity curves. Currently we have implemented the TianQin curve by default but
also allow custom curves.

[25]: # compare LISA and TianQin
fig, ax = vis.plot_sensitivity_curve(show=False, fill=False, instrument="LISA", label=
→˓"LISA")
fig, ax = vis.plot_sensitivity_curve(show=False, fill=False, instrument="TianQin", label=
→˓"TianQin",

color=None, fig=fig, ax=ax)
ax.legend()
plt.show()

50 Chapter 2. Tutorials

LEGWORK

Let’s also compare LISA with some imaginary detector that is a factor different than LISA

[26]: # compare LISA to an imaginary detector
fig, ax = vis.plot_sensitivity_curve(show=False, fill=False, instrument="LISA", label=
→˓"LISA")

note function signature must be the same as lisa_psd, despite some values being ignored
def imaginary_detector(f, t_obs, L, approximate_R, confusion_noise):

return 5e4 * f.value**2 * np.exp(5 * f.value) * psd.lisa_psd(f=f)

fig, ax = vis.plot_sensitivity_curve(show=False, fill=False, instrument="custom",
custom_psd=imaginary_detector, label="Imaginary␣

→˓detector",
color=None, fig=fig, ax=ax, L=5e9)

ax.legend()
plt.show()

2.5. Visualisation 51

LEGWORK

2.5.4 Plot sources on the sensitivity curve

Finally, we can combine everything we’ve done so far in this tutorial in order to plot distributions of binaries on the
sensitivity curve.

Note: We currently only support this for stationary sources (that are plotted as points rather than lines) but we are
working on implementing this for evolving sources too.

Circular and Stationary Binaries

Let’s start by creating a collection of circular and stationary binaries and computing the SNR for each.

[27]: n_values = 500
m_1 = np.random.uniform(0, 10, n_values) * u.Msun
m_2 = np.random.uniform(0, 10, n_values) * u.Msun
dist = np.random.uniform(0, 30, n_values) * u.kpc
f_orb = 10**(np.random.uniform(-5, -3, n_values)) * u.Hz
ecc = np.repeat(0.0, n_values)
t_obs = 4 * u.yr
weights = np.random.uniform(0, 1, n_values)

sources = source.Source(m_1=m_1, m_2=m_2, ecc=ecc, dist=dist, f_orb=f_orb,␣
(continues on next page)

52 Chapter 2. Tutorials

LEGWORK

(continued from previous page)

→˓weights=weights,
interpolate_g=False)

[28]: circ_stat_snr = sources.get_snr(verbose=True)

Calculating SNR for 500 sources
0 sources have already merged
500 sources are stationary

500 sources are stationary and circular

Now we can plot these binaries on the sensitivity curve using legwork.source.Source.plot_sources_on_sc().
Here we only plot those with SNR > 7 and, as earlier, we plot a density distribution for the most common 90% of
the distribution and plot the remaining 10% outliers as scatter points. Try changing the value of thresh or switching
whether to fill the KDE.

[29]: fig, ax = sources.plot_sources_on_sc(snr_cutoff=7, show=False)
fig, ax = sources.plot_sources_on_sc(snr_cutoff=7, disttype="kde", thresh=0.1, fill=True,
→˓ fig=fig, ax=ax)

But we may not want to know about only the detectable population, why don’t we also plot the undetectable binaries.
Additionally here we use a colormap to show the SNR of each binary and this map diverges at SNR = 1. Try changing
the value of cutoff to see how the plot changes.

[30]: # define the detectable parameters
cutoff = 0
detectable_snr = sources.snr[sources.snr > cutoff]
norm = TwoSlopeNorm(vmin=np.log10(np.min(detectable_snr)),

(continues on next page)

2.5. Visualisation 53

LEGWORK

(continued from previous page)

vcenter=0, vmax=np.log10(np.max(detectable_snr)))

fig, ax = sources.plot_sources_on_sc(snr_cutoff=cutoff, marker="*", cmap="PuOr_r",
c=np.log10(detectable_snr), show=False, norm=norm,␣

→˓scatter_s=50)

create a colorbar from the scatter points
cbar = fig.colorbar(ax.collections[1])
cbar.ax.set_ylabel(r"$\log_{10} (\rho)$")

plt.show()

It could also be interesting to see how other parameters are affecting your distribution. Here is the same plot but with
only the detectable binaries and coloured by their distance, as well as with a smaller x range. You should hopefully see
that the more distant binaries are at higher frequencies and comparatively lower ASDs.

[31]: # define the detectable parameters
cutoff = 7
detectable_dist = sources.dist[sources.snr > cutoff].value

plot the detectable binaries
fig, ax = sources.plot_sources_on_sc(snr_cutoff=cutoff, marker="*", cmap="plasma_r",

c=np.log10(detectable_dist),
show=False, xlim=(1e-5, 1e-2), scatter_s=50)

create a colorbar from the scatter points
(continues on next page)

54 Chapter 2. Tutorials

LEGWORK

(continued from previous page)

cbar = fig.colorbar(ax.collections[1])
cbar.ax.set_ylabel(r"{}{:latex})".format("$\log_{{{10}}} (D /$ ", sources.dist.unit))

plt.show()

Eccentric and Stationary Binaries

These binaries work in much the same way as circular and stationary binaries. However, now the gravitational wave
signal is spread over many harmonics. Therefore the harmonic with the maximum strain or snr may no longer be the
𝑛 = 2 harmonic as with circular binaries. This is best shown in an example.

Let’s take a collection of eccentric and stationary sources and show how eccentricity affects the max strain harmonic.

[32]: n_values = 500
m_1 = np.random.uniform(0, 10, n_values) * u.Msun
m_2 = np.random.uniform(0, 10, n_values) * u.Msun
dist = np.random.uniform(0, 30, n_values) * u.kpc
f_orb = 10**(np.random.uniform(-5, -3, n_values)) * u.Hz
ecc = np.random.uniform(0.35, 0.4, n_values)
t_obs = 4 * u.yr

[33]: sources = source.Source(m_1=m_1, m_2=m_2, ecc=ecc, dist=dist, f_orb=f_orb, interpolate_
→˓g=False)
ecc_stat_snr = sources.get_snr(verbose=True)

2.5. Visualisation 55

LEGWORK

Calculating SNR for 500 sources
0 sources have already merged
500 sources are stationary

500 sources are stationary and eccentric

This source Class contains a function that returns the maximum strain harmonic for any given eccentricity.

[34]: e_range = np.linspace(0, 0.995, 10000)
msh = sources.max_strain_harmonic(e_range)

fig = plt.figure(figsize=(15, 8))

plt.loglog(1 - e_range, msh)

plt.axhline(2, linestyle="dotted", color="grey")
plt.annotate(r"$n = 2$", xy=(5e-3, 2), va="bottom", fontsize=20, color="grey")

for e, l in [(0, r"$e=0.0$"), (0.3, r"$e=0.3$"), (0.9, r"$e=0.9$"), (0.99, r"$e=0.99$")]:
plt.axvline(1 - e, linestyle="dotted", color="grey")
plt.annotate(l, xy=(1 - e, np.max(msh)), rotation=90, ha="center", va="top",

fontsize=20, color="grey", bbox=dict(boxstyle="round", fc="white", ec=
→˓"none"))

plt.annotate("More circular", xy=(1, 1e2), xytext=(2e-1, 1e2), fontsize=20, va="center",␣
→˓color="grey",

arrowprops=dict(arrowstyle="-|>", fc="grey", ec="grey"))

plt.xlabel(r"$\log_{10}(1 - e)$")
plt.ylabel("Maximum Strain Harmonic")

plt.show()

56 Chapter 2. Tutorials

LEGWORK

As you can see in the plot above, once the eccentricity is greater than approximately 𝑒 = 0.3, the maximum strain
harmonic increases from 𝑛 = 2 to 𝑛 = 3 and this continues as eccentricity increases.

Although it is interesting to see this function, more directly applicable is the maximum SNR harmonic. This is useful
because we should plot the binary at this harmonic instead of the 𝑛 = 2. This harmonic is calculated for each binary
automatically when the SNR is calculated and stored in self.max_snr_harmonic.

So now we can plot eccentric binaries on the sensitivity curve at their maximum snr harmonic, such that their height
above the sensitivity curve is equal to their total SNR over all harmonics.

[35]: fig, ax = sources.plot_sources_on_sc(snr_cutoff=7, show=False)
fig, ax = sources.plot_sources_on_sc(snr_cutoff=7, disttype="kde", thresh=0.1, fill=True,

fig=fig, ax=ax)

We could also repeat this for a different detector like this

[36]: # note that we can the interpolate parameters to TianQin defaults
sources_tq = source.Source(m_1=m_1, m_2=m_2, ecc=ecc, dist=dist, f_orb=f_orb,

sc_params={"instrument": "TianQin", "L": np.sqrt(3) * 1e5 * u.
→˓km, "t_obs": 5 * u.yr},

interpolate_g=False)
ecc_stat_snr_tq = sources_tq.get_snr(instrument="TianQin", verbose=True)

Calculating SNR for 500 sources
0 sources have already merged
500 sources are stationary

500 sources are stationary and eccentric

[37]: fig, ax = sources_tq.plot_sources_on_sc(snr_cutoff=7, show=False)
(continues on next page)

2.5. Visualisation 57

LEGWORK

(continued from previous page)

fig, ax = sources_tq.plot_sources_on_sc(snr_cutoff=7, disttype="kde", thresh=0.1,␣
→˓fill=True,

fig=fig, ax=ax, show=False)

This concludes our tutorial for learning about the visualisation module of LEGWORK, be sure to check out our other
tutorials to learn more about the exciting features that LEGWORK has to offer.

Note: This tutorial was generated from a Jupyter notebook that can be downloaded here. If you’d like to reproduce the
results in the notebook, or make changes to the code, we recommend downloading this notebook and running it with
Jupyter as certain cells (mostly those that change plot styles) are excluded from the tutorials.

2.6 Understanding units in LEGWORK

In this tutorial, we explain how units work in LEGWORK, how to create proper input for functions and how to convert
output to units of your choice. Note that LEGWORK uses the astropy.units module for units and so this tutorial draws
heavily from their documentation!

We’ve this tutorial up as a sort of FAQ so feel free to skip to the most relevant part!

Let’s start by important the LEGWORK source module as well as astropy.units and numpy.

[1]: import legwork.source as source
import astropy.units as u

import numpy as np

58 Chapter 2. Tutorials

https://github.com/TeamLEGWORK/LEGWORK/tree/main/docs/notebooks/Units.ipynb
https://docs.astropy.org/en/stable/units/index.html#module-astropy.units
https://docs.astropy.org/en/stable/units/
https://docs.astropy.org/en/stable/units/index.html#module-astropy.units

LEGWORK

2.6.1 What units can I use?

We follow the Standard Units defined in Astropy. This means that

• lengths are defined in terms of metres (or equivalent units)

• masses are defined in terms of kilograms (or equivalent units)

• times are defined in terms of seconds (or equivalent units)

However, if you’re planning to try to measure the gravitational waves from a source for which kilograms is a sensible
unit for the mass, I’ve got some bad news for you. . .

Therefore, for LEGWORK you are most likely to focus on the following units:

• mass: M⊙, accessed via u.Msun

• frequency: Hz, accessed via u.Hz

• distance: kpc,Mpc,Gpc, accessed via u.kpc, u.Mpc, u.Gpc

• separation: AU, accessed via u.AU or perhaps R⊙, accessed via u.Rsun

• ages: yr,Myr,Gyr, accessed via u.yr, u.Myr, u.Gyr

But that doesn’t mean you have to use these units because of the flexibility of Astropy. LEGWORK will accept any
equivalent unit to those listed above.

Astropy provides a very convenient method for getting equivalent units. Say you know you could input the mass of a
source in kilograms but you know that this isn’t the best unit. You can find some equivalent choices by running

[2]: u.kg.find_equivalent_units()

[2]: Primary name | Unit definition | Aliases
[
M_e | 9.10938e-31 kg | ,
M_p | 1.67262e-27 kg | ,
earthMass | 5.97217e+24 kg | M_earth, Mearth ,
g | 0.001 kg | gram ,
jupiterMass | 1.89812e+27 kg | M_jup, Mjup, M_jupiter, Mjupiter ,
kg | irreducible | kilogram ,
solMass | 1.98841e+30 kg | M_sun, Msun ,
t | 1000 kg | tonne ,
u | 1.66054e-27 kg | Da, Dalton ,

]

And thus you can see that you could even use the mass of an electron (u.M_e) as your unit if that is your heart’s desire.

2.6.2 How do I give a variable units?

Okay great, so you know what unit you want to use, now you just need to apply it to a variable. Say you have a list of
masses that looks like this

[3]: # a list of masses
masses = [1.0, 1.4, 10, 30, 50]
print(masses)

[1.0, 1.4, 10, 30, 50]

and you know that each mass is in terms of solar masses. To make sure LEGWORK knows this you multiply your variable
by the unit.

2.6. Understanding units in LEGWORK 59

https://docs.astropy.org/en/stable/units/standard_units.html

LEGWORK

[4]: masses_with_units = masses * u.Msun
print(masses_with_units)

[1. 1.4 10. 30. 50.] solMass

And. . . that’s it! Your input has been transformed into an Astropy Quantity rather than a simple Python list and you’re
good to go!

2.6.3 Could you show me an example of using units with LEGWORK input?

Well, how could I say no when you asked so nicely? Let’s create a collection sources and get their SNRs.

[5]: # let's define the primary in solar masses
m_1 = [10, 12, 30] * u.Msun

and the secondary in electron masses (because why not)
m_2 = [1e60, 5e60, 7.5e60] * u.M_e

then the frequencies are generally defined in terms of Hertz
f_orb = [1e-3, 1e-4, 1e-2] * u.Hz

and the distances with kiloparsecs
dist = [1, 8, 50] * u.kpc

finally, eccentricity has no unit
ecc = [0.7, 0.0, 0.2]

sources = source.Source(m_1=m_1, m_2=m_2, f_orb=f_orb, dist=dist, ecc=ecc, interpolate_
→˓g=False)

Then if we ask the class for the signal-to-noise ratio it will handle the units cleanly and fully simplify.

[6]: sources.get_snr()

[6]: array([3.76050048e+03, 8.61372971e-01, 4.14167952e+03])

Be careful though, if you don’t use correct units then you’ll get a UnitConversionError that may be hard to isolate.

[7]: try:
give frequency units of length
f_orb = f_orb.value * u.m
try to create a source
sources = source.Source(m_1=m_1, m_2=m_2, f_orb=f_orb, dist=dist, ecc=ecc,␣

→˓interpolate_g=False)
except u.UnitConversionError as error:

print(error)

'm(1/3) solMass(1/3) / (kg(1/3) s(2/3))' and 'AU' (length) are not convertible

60 Chapter 2. Tutorials

LEGWORK

2.6.4 How do you convert between units?

Great work, if you’ve got this far then you can now provide input to LEGWORK with any unit of your choice.

But what about the output? LEGWORK tries to choose some sensible units for the output but maybe you want something
else and can’t for the life of you remember the difference between a kiloparsec and a light year. Never fear, Astropy has
you covered!

In order to convert between units you can use the .to() method of an Astropy quanitity. Let’s get the merger times of
the sources that we defined in the earlier example and convert the result to different units.

[8]: # get the merger times
t_merge = sources.get_merger_time()

by default LEGWORK uses Gyr for merger times
t_merge

[8]: [1.4564593 × 10−5, 0.013231627, 1.8741491 × 10−8] Gyr

[9]: # but we could look at how many years this is
t_merge.to(u.yr)

[9]: [14564.593, 13231627, 18.741491] yr

[10]: # or maybe you just really want to know how many fortnights until your favourite source␣
→˓merges
t_merge.to(u.fortnight)

[10]: [379979.83, 3.4520369 × 108, 488.95211] fortnight

You can also convert to any combination of units as long as they simplify to an equivalent unit.

[11]: # let's convert to a combination of units
t_merge.to(u.yr * u.Msun / u.kg)

[11]: [7.3247438 × 10−27, 6.6543759 × 10−24, 9.425366 × 10−30] M⊙ yr
kg

Beware though, if you try to convert to a unit isn’t equivalent then you’ll get an UnitConversionerror

[12]: try:
t_merge.to(u.yr * u.Msun)

except u.UnitConversionError as error:
print(error)

'Gyr' (time) and 'solMass yr' are not convertible

2.6.5 How do I decompose a variable’s value and unit?

So you’ve got the result and now the pesky unit is perhaps getting in the way of saving the result or doesn’t work with
another of your functions. If you want to get the value back then just use .value like this

[13]: masses_with_units = [1.0, 1.4, 10, 30, 50] * u.Msun
print(masses_with_units)
print(masses_with_units.value)

[1. 1.4 10. 30. 50.] solMass
[1. 1.4 10. 30. 50.]

2.6. Understanding units in LEGWORK 61

LEGWORK

You can also use .unit to get the unit of a variable (this can be very useful when plotting and labelled axes)

[14]: print(masses_with_units)
print(masses_with_units.unit)

[1. 1.4 10. 30. 50.] solMass
solMass

That’s all for this tutorial, be sure to check out the other ones to find other ways to keep your feet up and let us do
the LEGWORK! If you still have questions about units we recommend that you take a look at the Astropy documentation
directly.

62 Chapter 2. Tutorials

https://docs.astropy.org/en/stable/units/

CHAPTER

THREE

DEMOS

This section contains a series of demos that highlight LEGWORK’s capabilities with some example use cases. We’ll
continue to update this page with new demos and if you’ve got an idea for a great use case for LEGWORK please open a
pull request and show off your new demo!

Note: This tutorial was generated from a Jupyter notebook that can be downloaded here. If you’d like to reproduce the
results in the notebook, or make changes to the code, we recommend downloading this notebook and running it with
Jupyter as certain cells (mostly those that change plot styles) are excluded from the tutorials.

3.1 Demo - Basic SNR Calculation

This demo shows how you can use LEGWORK to compute the SNR of a single binary system, as well as a collection of
systems.

[1]: import legwork as lw
import astropy.units as u

3.1.1 Single source SNR calculation

The most basic use case of LEGWORK is to calculate the signal-to-noise ratio for a single stellar-mass binary system.
Let’s create a toy source and calculate its SNR (for a 4-year LISA mission by default).

[3]: source = lw.source.Source(m_1=10 * u.Msun,
m_2=10 * u.Msun,
ecc=0.2,
f_orb=1e-4 * u.Hz,
dist=8 * u.kpc,
interpolate_g=False)

source.get_snr().round(2)

[3]: array([4.49])

That’s it! Behind the scenes LEGWORK has checked whether the source is eccentric/circular and evolving/stationary
and picked the fastest possible way to calculate the SNR accurately.

63

https://www.github.com/TeamLEGWORK/LEGWORK/pulls
https://www.github.com/TeamLEGWORK/LEGWORK/pulls
https://github.com/TeamLEGWORK/LEGWORK/tree/main/docs/demos/BasicSNRCalculation.ipynb

LEGWORK

3.1.2 Population of sources SNR calculation

If we want to know the SNR of three (or any number of) sources then you can instead provide arrays for each of the
arguments and execute the code in exactly the same way.

[4]: # supply arrays that are identical to earlier example but different primary masses
sources = lw.source.Source(m_1=[5, 10, 20] * u.Msun,

m_2=[10, 10, 10] * u.Msun,
ecc=[0.2, 0.2, 0.2],
f_orb=[1e-4, 1e-4, 1e-4] * u.Hz,
dist=[8, 8, 8] * u.kpc,
interpolate_g=False)

sources.get_snr().round(2)

[4]: array([2.47, 4.49, 7.85])

3.1.3 Change sensitivity curve parameters

If you want to know the SNR of these sources in a different type of detector you can also specify this with sc_params.
Let’s repeat the same calculation but now find the SNR in the TianQin detector in a 5-year mission but excluding any
confusion noise.

[9]: # supply arrays that are identical to earlier example but different primary masses
sources = lw.source.Source(m_1=[5, 10, 20] * u.Msun,

m_2=[10, 10, 10] * u.Msun,
ecc=[0.2, 0.2, 0.2],
f_orb=[1e-4, 1e-4, 1e-4] * u.Hz,
dist=[8, 8, 8] * u.kpc,
interpolate_g=False,
sc_params={

"instrument": "TianQin",
"t_obs": 5 * u.yr,
"confusion_noise": None

})

sources.get_snr().round(2)

[9]: array([1.07, 1.95, 3.41])

Note: This tutorial was generated from a Jupyter notebook that can be downloaded here. If you’d like to reproduce the
results in the notebook, or make changes to the code, we recommend downloading this notebook and running it with
Jupyter as certain cells (mostly those that change plot styles) are excluded from the tutorials.

64 Chapter 3. Demos

https://github.com/TeamLEGWORK/LEGWORK/tree/main/docs/demos/TheRoleofEccentricity.ipynb

LEGWORK

3.2 Demo - The Role of Eccentricity

This demo uses LEGWORK to illustrate the role of eccentricity in the detectability of a gravitational wave source in LISA.

[2]: import legwork as lw
import numpy as np
import astropy.units as u
import matplotlib.pyplot as plt

[3]: %config InlineBackend.figure_format = 'retina'

plt.rc('font', family='serif')
plt.rcParams['text.usetex'] = False
fs = 24

update various fontsizes to match
params = {'figure.figsize': (12, 8),

'legend.fontsize': fs,
'axes.labelsize': fs,
'xtick.labelsize': 0.9 * fs,
'ytick.labelsize': 0.9 * fs,
'axes.linewidth': 1.1,
'xtick.major.size': 7,
'xtick.minor.size': 4,
'ytick.major.size': 7,
'ytick.minor.size': 4}

plt.rcParams.update(params)

3.2.1 How does eccentricity affect the detectability of a source?

Demonstration of trends with LEGWORK

Eccentricity plays a complex role in the detection of LISA sources. Although eccentric binaries emit stronger gravita-
tional waves, they also shift the emission to higher frequency harmonics and cause a faster inspiral. These effects in
tandem produce some interesting trends that we can demonstrate with LEGWORK.

Let’s create three toy sources with different eccentricities and see how their eccentricities change.

[4]: # set eccentricities
ecc = np.array([1e-6, 0.6, 0.9])
n_binaries = len(ecc)

use constant values for mass, f_orb and distance
m_1 = np.repeat(0.6, n_binaries) * u.Msun
m_2 = np.repeat(0.6, n_binaries) * u.Msun
f_orb = np.repeat(1.5e-3, n_binaries) * u.Hz
dist = np.repeat(15, n_binaries) * u.kpc

get the SNR in each harmonic
snr2_n = lw.snr.snr_ecc_evolving(m_1=m_1, m_2=m_2, f_orb_i=f_orb, ecc=ecc, dist=dist,

harmonics_required=100, t_obs=4 * u.yr, n_step=1000,
ret_snr2_by_harmonic=True)

(continues on next page)

3.2. Demo - The Role of Eccentricity 65

LEGWORK

(continued from previous page)

snr = snr2_n.sum(axis=1)**(0.5)
print(snr)

[31.73932899 50.18790614 38.77725186]

We can see from this that increasing the eccentricity does not always increase the SNR. This can be better understood
by plotting the SNR of each harmonic of each source and seeing how the distribution shifts.

[5]: # plot LISA sensitivity curve
fig, ax = lw.visualisation.plot_sensitivity_curve(frequency_range=np.logspace(-3.5, 0,␣
→˓1000) * u.Hz,

show=False)

plot each sources
colours = [plt.get_cmap("plasma")(i) for i in [0.1, 0.5, 0.8]]
for i in range(len(snr2_n)):

work out the harmonic frequencies and ASDs
f_harm = f_orb[i] * range(1, len(snr2_n[0]) + 1)
y_vals = lw.psd.lisa_psd(f_harm)**(0.5) * np.sqrt(snr2_n)[i]

only plot points above the sensitivity curve
mask = np.sqrt(snr2_n)[i] > 1.0

compute the index of the maximal SNR value
max_index = np.argmax(y_vals[1:]) + 1

plot each harmonic
ax.scatter(f_harm[mask], y_vals[mask],

s=70, color=colours[i],
label=r"$e={{{:1.1f}}}$".format(ecc[i]))

annotate each source with its SNR at the max SNR value
ax.annotate(r"$\rho={{{:1.0f}}}$".format(snr2_n[i].sum()**(0.5)),

xy=(f_harm[max_index].value, y_vals[max_index].value * 1.05),
ha="center", va="bottom", fontsize=0.9*fs, color=colours[i])

plot a dotted line to highlight where the signal is concentrated
ax.plot([f_harm[max_index].value] * 2, [1e-20, y_vals[max_index].value],

color="grey", linestyle="dotted", lw=2, zorder=0)

add a legend and annotate the other source properties
ax.legend(markerscale=2.5, handletextpad=0.0, ncol=3, loc="upper center",

columnspacing=0.75, fontsize=0.85 * fs)

annotation_string = r"$m_1 = 0.6 \, {\rm M_{\odot}}$"
annotation_string += "\n"
annotation_string += r"$m_2 = 0.6 \, {\rm M_{\odot}}$"
annotation_string += "\n"
annotation_string += r"$D_L = 15 \, {\rm kpc}$"
annotation_string += "\n"
annotation_string += r"$f_{\rm orb} = 1.5 \, {\rm mHz}$"

ax.annotate(annotation_string, xy=(3.5e-1, 1.3e-20), ha="center", va="bottom",␣
(continues on next page)

66 Chapter 3. Demos

LEGWORK

(continued from previous page)

→˓fontsize=0.8 * fs,
bbox=dict(boxstyle="round", fc="white", ec="white", alpha=0.3))

ax.set_ylim(1e-20, 2e-18)

plt.show()

Explanation of the trends

We see two effects in the signal-to-noise ratio here. First, increasing the eccentricity from essentially circular to 𝑒 = 0.6
results in a higher signal-to-noise ratio (𝜌 = 31.7 → 𝜌 = 50.2). This is because an eccentric binary has enhanced
energy emission via gravitational waves. This means that an eccentric binary will not only inspiral faster than an
otherwise identical circular binary, but also will always have a stronger gravitational wave strain.

The second effect is more intriguing. We see that increasing the eccentricity from 𝑒 = 0.6 to 𝑒 = 0.9 results in a
relative decrease in SNR (𝜌 = 50.2 → 𝜌 = 38.8). The reason for this is that eccentric binaries emit gravitational
waves at many harmonic frequencies (unlike circular binaries, which emit predominantly twice the orbital frequency).
This leads to the gravitational wave signal being diluted over many frequencies higher than the orbital frequency, where
the higher the eccentricity, the more harmonics are required to capture all of the gravitational luminosity. Therefore, if
the eccentricity is too high, the majority of the signal may be emitted at a frequency to which LISA is less sensitive.

From the plot, we can better understand why a source with 𝑒 = 0.9 has a lower SNR than the same source with 𝑒 = 0.6.
From the dotted lines, we can note that the signal from the 𝑒 = 0.9 source is concentrated at a frequency of around
4 × 10−2 Hz. The LISA sensitivity at this point is much weaker than the 6 × 10−3 Hz at which the 𝑒 = 0.6 source
is concentrated. Therefore, although the strain from a more eccentric binary is stronger, the SNR is lower due to the
increased noise in the LISA detector.

Overall, we can therefore conclude that for LISA sources of this nature, higher eccentricity will produce more detectable

3.2. Demo - The Role of Eccentricity 67

LEGWORK

binaries only if the orbital frequency is not already at or above the minimum of the LISA sensitivity curve. Another
consideration for more massive binaries is whether the increased eccentricity will cause the binary to merge before the
mission ends, which would cause a significant decrease in signal-to-noise ratio.

3.2.2 How does eccentricity affect the merger time?

As mentioned above, eccentric binaries will merge more quickly than circular ones and we can show this with LEGWORK.

Below, we make a grid of frequencies and eccentricities, flatten them and calculate their merger times, before reshaping
and plotting the result.

[6]: f_range = np.logspace(-5, -1, 100) * u.Hz
e_range = np.linspace(0, 0.99, 500)

m_1 = np.repeat(10, len(f_range) * len(e_range)) * u.Msun
m_2 = np.repeat(10, len(f_range) * len(e_range)) * u.Msun

F, E = np.meshgrid(f_range, e_range)

t_merge = lw.evol.get_t_merge_ecc(ecc_i=E.flatten(), f_orb_i=F.flatten(), m_1=m_1, m_2=m_
→˓2,

small_e_tol=0.15, large_e_tol=0.9999).reshape(F.shape)

[7]: fig, ax = plt.subplots()

cont = ax.contourf(F, E, np.log10(t_merge.to(u.yr).value), cmap="plasma_r", levels=np.
→˓linspace(-6, 10, 17))
cbar = fig.colorbar(cont, label=r"Merger time, $\log_{10} (t_{\rm merge} / {\rm yr})$")
ax.set_xscale("log")

hide edges that show up in rendered PDFs
for c in cont.collections:

c.set_edgecolor("face")

mass_string = ""
mass_string += r"$m_1 = {{{}}} \, {{ \rm M_{{\odot}}}}$".format(m_1[0].value)
mass_string += "\n"
mass_string += r"$m_2 = {{{}}} \, {{ \rm M_{{\odot}}}}$".format(m_2[0].value)
ax.annotate(mass_string, xy=(0.5, 0.04), xycoords="axes fraction", fontsize=0.6*fs,

bbox=dict(boxstyle="round", color="white", ec="white", alpha=0.5), ha="center
→˓", va="bottom")

ax.set_xlabel(r"Orbital frequency, $f_{\rm orb} \, [\rm Hz]$")
ax.set_ylabel(r"Eccentricity, e")

mission_length = ax.contour(F, E, np.log10(t_merge.to(u.yr).value), levels=np.log10([4]),
linestyles="--", linewidths=2)

ax.clabel(mission_length, fmt={np.log10(4): r"$t_{\rm merge} = 4\,{\rm years}$"},␣
→˓fontsize=0.7*fs, manual=[(1e-2, 0.5)])

plt.show()

68 Chapter 3. Demos

LEGWORK

Note: This tutorial was generated from a Jupyter notebook that can be downloaded here. If you’d like to reproduce the
results in the notebook, or make changes to the code, we recommend downloading this notebook and running it with
Jupyter as certain cells (mostly those that change plot styles) are excluded from the tutorials.

3.3 Demo - Compare sensitivity curves

This demo shows how you can use LEGWORK to compare different detector sensitivitity curves. We illustrate these
sensitivity curves as well as how the SNR of a source changes in different detectors.

[2]: import legwork
import numpy as np
import astropy.units as u
import matplotlib.pyplot as plt
from matplotlib.colors import TwoSlopeNorm

from copy import copy

[3]: %config InlineBackend.figure_format = 'retina'

plt.rc('font', family='serif')
plt.rcParams['text.usetex'] = False

(continues on next page)

3.3. Demo - Compare sensitivity curves 69

https://github.com/TeamLEGWORK/LEGWORK/tree/main/docs/demos/CompareSensitivityCurves.ipynb

LEGWORK

(continued from previous page)

fs = 24

update various fontsizes to match
params = {'figure.figsize': (12, 8),

'legend.fontsize': fs,
'axes.labelsize': fs,
'xtick.labelsize': 0.7 * fs,
'ytick.labelsize': 0.7 * fs}

plt.rcParams.update(params)

3.3.1 Direct sensitivity curve comparisons

First, we can plot the sensitivity curves directly to see which regimes are better for different detectors. Let’s look at
different LISA specifications as well as the TianQin detector.

[4]: # create new figure
fig, ax = plt.subplots()

define the frequency range of interest
fr = np.logspace(-4, 0, 1000) * u.Hz

plot a sensitivity curve for different mission lengths
linewidth = 4
for i, t_obs in enumerate([0.5, 2.0, 4.0]):

legwork.visualisation.plot_sensitivity_curve(frequency_range=fr, t_obs=t_obs * u.yr,
fig=fig, ax=ax, show=False, fill=False,␣

→˓linewidth=linewidth,
color=plt.get_cmap("Blues")((i + 1) * 0.

→˓3),
label=r"LISA ($t_{{\rm obs}} = {{{}}} \,

→˓ {{\rm yr}}$)".format(t_obs))

plot the LISA curve with an approximate response function
legwork.visualisation.plot_sensitivity_curve(frequency_range=fr, approximate_R=True,

fig=fig, ax=ax, show=False, fill=False,␣
→˓linewidth=linewidth,

color=plt.get_cmap("Purples")(0.5),
label=r"LISA (approximate $\mathcal{R}(f)$)

→˓")

plot the TianQin curve
legwork.visualisation.plot_sensitivity_curve(frequency_range=fr, instrument="TianQin",␣
→˓label="TianQin",

fig=fig, ax=ax, show=False,␣
→˓linewidth=linewidth,

color=plt.get_cmap("Greens")(0.6),␣
→˓fill=False)

ax.legend(fontsize=0.7*fs)

plt.show()

70 Chapter 3. Demos

LEGWORK

3.3.2 SNR in different detectors

But we need not just look at the sensitivity curve, we could also investigate in what regimes of frequency and eccentricity
each detector is superior. Let’s compare a LISA to TianQin with a grid of sources across eccentricity and frequency
space.

[5]: # spread out some frequencies and eccentricities
f_orb_s = np.logspace(-4, -1, 200) * u.Hz
ecc_s = np.linspace(0, 0.9, 150)

turn them into a grid
F, E = np.meshgrid(f_orb_s, ecc_s)

flatten the grid
F_flat, E_flat = F.flatten(), E.flatten()

put all of the sources at the same distance with the same mass
m_1 = np.repeat(10, len(F_flat)) * u.Msun
m_2 = np.repeat(10, len(F_flat)) * u.Msun
dist = np.repeat(8, len(F_flat)) * u.kpc

define a set of sources
sources = legwork.source.Source(m_1=m_1, m_2=m_2, f_orb=F_flat, ecc=E_flat, dist=dist,␣
→˓gw_lum_tol=1e-3)
sources.get_merger_time()

3.3. Demo - Compare sensitivity curves 71

LEGWORK

[5]: [0.0040682461, 0.0037085677, 0.0033806889, . . . , 1.6679556 × 10−13, 1.5204897 × 10−13, 1.3860614 ×
10−13] Gyr

[6]: # compute the LISA SNR
LISA_snr = copy(sources.get_snr(verbose=True, which_sources=sources.t_merge > 0.1 * u.
→˓yr))

Calculating SNR for 26248 sources
0 sources have already merged
13486 sources are stationary

222 sources are stationary and circular
13264 sources are stationary and eccentric

12762 sources are evolving
158 sources are evolving and circular
12604 sources are evolving and eccentric

[7]: # compute the TianQin SNR
sources.update_sc_params({"instrument": "TianQin"})
TQ_snr = sources.get_snr(verbose=True, which_sources=sources.t_merge > 0.1 * u.yr)

Calculating SNR for 26248 sources
0 sources have already merged
13126 sources are stationary

216 sources are stationary and circular
12910 sources are stationary and eccentric

13122 sources are evolving
164 sources are evolving and circular
12958 sources are evolving and eccentric

[10]: # create a figure
fig, ax = plt.subplots(figsize=(14, 12))
ax.set_xscale("log")
ax.set_xlabel(r"Orbital Frequency, $f_{\rm orb} \, [{\rm Hz}]$")
ax.set_ylabel(r"Eccentricity, e")

ratio = np.zeros_like(LISA_snr)
ratio[LISA_snr > 0] = (LISA_snr[LISA_snr > 0] / TQ_snr[LISA_snr > 0])
ratio = ratio.reshape(F.shape)

make contours of the ratio of SNR
ratio_cont = ax.contourf(F, E, ratio, cmap="PRGn_r",

norm=TwoSlopeNorm(vcenter=1.0, vmin=0.0, vmax=3.6), levels=20)

for c in ratio_cont.collections:
c.set_edgecolor("face")

add a line when the SNRs are equal
ax.contour(F, E, ratio, levels=[1.0], colors="grey", linewidths=2.0, linestyles="--")

add a colourbar
cbar = fig.colorbar(ratio_cont, fraction=2/14, pad=0.02,

label=r"$\rho_{\rm LISA} / \rho_{\rm TianQin}$",
(continues on next page)

72 Chapter 3. Demos

LEGWORK

(continued from previous page)

ticks=np.arange(0, 3.5 + 0.5, 0.5))

annotate which regions suit each detector
ax.annotate("LISA stronger", xy=(0.1, 0.53), xycoords="axes fraction", fontsize=0.7 * fs,

color=plt.get_cmap("PRGn_r")(1.0),
bbox=dict(boxstyle="round", facecolor="white", edgecolor="white", alpha=0.5,␣

→˓pad=0.4))
ax.annotate("TianQin stronger", xy=(0.6, 0.73), xycoords="axes fraction", fontsize=0.7 *␣
→˓fs,

color=plt.get_cmap("PRGn_r")(0.0),
bbox=dict(boxstyle="round", facecolor="white", edgecolor="white", alpha=0.5,␣

→˓pad=0.4))

annotate with source details
source_string = r"$m_1 = {{{}}} \, {{ \rm M_{{\odot}}}}$".format(m_1[0].value)
source_string += "\n"
source_string += r"$m_2 = {{{}}} \, {{ \rm M_{{\odot}}}}$".format(m_1[0].value)
source_string += "\n"
source_string += r"$D_L = {{{}}} \, {{ \rm kpc}}$".format(dist[0].value)
ax.annotate(source_string, xy=(0.98, 0.03), xycoords="axes fraction", ha="right",␣
→˓fontsize=0.75*fs,

bbox=dict(boxstyle="round", facecolor="white", edgecolor="white", alpha=0.5,␣
→˓pad=0.4))

plt.show()

3.3. Demo - Compare sensitivity curves 73

LEGWORK

From this plot we can see that for circular sources at low frequenies LISA produces a stronger SNR. As eccentricity
is increases, the range of frequencies at which LISA is superior decreases until at 𝑒 = 0.9, TianQin is better at every
frequency greater than approximately 0.3mHz!

Note: This tutorial was generated from a Jupyter notebook that can be downloaded here. If you’d like to reproduce the
results in the notebook, or make changes to the code, we recommend downloading this notebook and running it with
Jupyter as certain cells (mostly those that change plot styles) are excluded from the tutorials.

74 Chapter 3. Demos

https://github.com/TeamLEGWORK/LEGWORK/tree/main/docs/demos/HorizonDistance.ipynb

LEGWORK

3.4 Demo - LISA Horizon Distance

This demo shows how to use LEGWORK to compute the horizon distance for a collection of sources.

[2]: import legwork as lw
import numpy as np
import astropy.units as u
import matplotlib.pyplot as plt

[3]: %config InlineBackend.figure_format = 'retina'

plt.rc('font', family='serif')
plt.rcParams['text.usetex'] = False
fs = 24

update various fontsizes to match
params = {'figure.figsize': (12, 8),

'legend.fontsize': fs,
'axes.labelsize': fs,
'xtick.labelsize': 0.9 * fs,
'ytick.labelsize': 0.9 * fs,
'axes.linewidth': 1.1,
'xtick.major.size': 7,
'xtick.minor.size': 4,
'ytick.major.size': 7,
'ytick.minor.size': 4}

plt.rcParams.update(params)

3.4.1 Horizon distance of circular binaries

The horizon distance for a source is the maximum distance at which the SNR of a source is still above some detectable
threshold. The horizon distance can be computed from the SNR as follows since it is inversely proportional to the
distance.

𝐷hor =
𝜌(𝐷)

𝜌detect
·𝐷, (3.1)

Where 𝜌(𝐷) is the SNR at some distance 𝐷 and 𝜌detect is the SNR above which we consider a source detectable.

Let’s start doing this by creating a grid of chirp masses and orbital frequencies and creating a Source class from them.

[4]: # create a list of masses and frequencies
m_c_grid = np.logspace(-1, np.log10(50), 500) * u.Msun
f_orb_grid = np.logspace(np.log10(4e-5), np.log10(3e-1), 400) * u.Hz

turn the two lists into grids
MC, FORB = np.meshgrid(m_c_grid, f_orb_grid)

flatten grids
m_c, f_orb = MC.flatten(), FORB.flatten()

convert chirp mass to individual masses for source class
q = 1.0
m_1 = m_c / q**(3/5) * (1 + q)**(1/5)

(continues on next page)

3.4. Demo - LISA Horizon Distance 75

LEGWORK

(continued from previous page)

m_2 = m_1 * q

use a fixed distance and circular binaries
dist = np.repeat(1, len(m_c)) * u.kpc
ecc = np.zeros(len(m_c))

create the source class
sources = lw.source.Source(m_1=m_1, m_2=m_2, dist=dist, f_orb=f_orb, ecc=ecc, gw_lum_
→˓tol=1e-3)

Next, we can use LEGWORK to compute their merger times and SNRs for the contours.

[5]: # calculate merger times and then SNR
sources.get_merger_time()
sources.get_snr(verbose=True)

Calculating SNR for 200000 sources
0 sources have already merged
125169 sources are stationary

125169 sources are stationary and circular
74831 sources are evolving

74831 sources are evolving and circular

[5]: array([5.37039831e-04, 5.48303595e-04, 5.59803603e-04, ...,
1.06420933e+04, 1.07531750e+04, 1.08654183e+04])

We flattened the grid to fit into the Source class but now we can reshape the output to match the original grid.

[6]: # reshape the output into grids
t_merge_grid = sources.t_merge.reshape(MC.shape)
snr_grid = sources.snr.reshape(MC.shape)

Now we can define a couple of functions for formatting the time, distance and galaxy name contours.

[7]: def fmt_time(x):
if x == 4:

return r"$t_{\rm merge} = T_{\rm obs}$"
elif x >= 1e9:

return "{0:1.0f} Gyr".format(x / 1e9)
elif x >= 1e6:

return "{0:1.0f} Myr".format(x / 1e6)
elif x >= 1e3:

return "{0:1.0f} kyr".format(x / 1e3)
elif x >= 1:

return "{0:1.0f} yr".format(x)
elif x >= 1/12:

return "{0:1.0f} month".format(x * 12)
else:

return "{0:1.0f} week".format(x * 52)

def fmt_dist(x):
if x >= 1e9:

return "{0:1.0f} Gpc".format(x / 1e9)
elif x >= 1e6:

(continues on next page)

76 Chapter 3. Demos

LEGWORK

(continued from previous page)

return "{0:1.0f} Mpc".format(x / 1e6)
elif x >= 1e3:

return "{0:1.0f} kpc".format(x / 1e3)
else:

return "{0:1.0f} pc".format(x)

def fmt_name(x):
if x == np.log10(8):

return "MW Centre"
elif x == np.log10(50):

return "SMC/LMC"
elif x == np.log10(800):

return "Andromeda"
elif x == np.log10(40000):

return "GW170817"

Finally, we put it all together to create a contour plot with all of the information.

[8]: # create a square figure plus some space for a colourbar
size = 12
cbar_space = 2
fig, ax = plt.subplots(figsize=(size + cbar_space, size))

set up scales early so contour labels show up nicely
ax.set_xscale("log")
ax.set_yscale("log")

set axes labels and lims
ax.set_xlabel(r"Orbital Frequency, $f_{\rm orb} \, [\rm Hz]$")
ax.set_ylabel(r"Chirp Mass, $\mathcal{M}_c \, [\rm M_{\odot}]$")
ax.set_xlim(4e-5, 3e-1)

calculate the horizon distance
snr_threshold = 7
horizon_distance = (snr_grid / snr_threshold * 1 * u.kpc).to(u.kpc)

set up the contour levels
distance_levels = np.arange(-3, 6 + 0.5, 0.5)
distance_tick_levels = distance_levels[::2]

plot the contours for horizon distance
distance_cont = ax.contourf(FORB, MC, np.log10(horizon_distance.value), levels=distance_
→˓levels)

hide edges that show up in rendered PDFs
for c in distance_cont.collections:

c.set_edgecolor("face")

create a colour with custom formatted labels
cbar = fig.colorbar(distance_cont, ax=ax, pad=0.02, ticks=distance_tick_levels,␣
→˓fraction=cbar_space / (size + cbar_space))
cbar.ax.set_yticklabels([fmt_dist(np.power(10, distance_tick_levels + 3)[i]) for i in␣

(continues on next page)

3.4. Demo - LISA Horizon Distance 77

LEGWORK

(continued from previous page)

→˓range(len(distance_tick_levels))])
cbar.set_label(r"Horizon Distance", fontsize=fs)
cbar.ax.tick_params(axis="both", which="major", labelsize=0.7 * fs)

annotate the colourbar with some named distances
named_distances = np.log10([8, 50, 800, 40000])
for name in named_distances:

cbar.ax.axhline(name, color="white", linestyle="dotted")

plot the same names as contours
named_cont = ax.contour(FORB, MC, np.log10(horizon_distance.value), levels=named_
→˓distances,

colors="white", alpha=0.8, linestyles="dotted")
ax.clabel(named_cont, named_cont.levels, fmt=fmt_name, use_clabeltext=True, fontsize=0.
→˓7*fs,

manual=[(1.1e-3, 2e-1), (4e-3, 2.2e-1), (4e-3,1e0), (3e-3, 1.2e1)])

add a line for when the merger time becomes less than the inspiral time
time_cont = ax.contour(FORB, MC, t_merge_grid.to(u.yr).value, levels=[4],

colors="black", linewidths=2, linestyles="dotted") #[1/52, 1/12,␣
→˓4, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10]
ax.clabel(time_cont, time_cont.levels, fmt=fmt_time, fontsize=0.7*fs, use_
→˓clabeltext=True, manual=[(2.5e-2, 5e0)])

plot a series of lines and annotations for average DCO masses
for m_1, m_2, dco in [(0.6, 0.6, "WDWD"), (1.4, 1.4, "NSNS"),

(10, 1.4, "BHNS"), (10, 10, "BHBH"), (30, 30, "BHBH")]:
find chirp mass
m_c_val = lw.utils.chirp_mass(m_1, m_2)

plot lines before and after bbox
ax.plot([4e-5, 4.7e-5], [m_c_val, m_c_val],

color="black", lw=0.75, zorder=1, linestyle="--")
ax.plot([1.2e-4, 1e0], [m_c_val, m_c_val],

color="black", lw=0.75, zorder=1, linestyle="--")

plot name and bbox, then masses below in smaller font
ax.annotate(dco + "\n", xy=(7.5e-5, m_c_val), ha="center", va="center", fontsize=0.

→˓7*fs,
bbox=dict(boxstyle="round", fc="white", ec="white", alpha=0.25))

ax.annotate(r"${{{}}} + {{{}}}$".format(m_1, m_2),
xy=(7.5e-5, m_c_val * 0.95), ha="center", va="top", fontsize=0.5*fs)

ensure that everyone knows this only applies for circular sources
ax.annotate(r"$e = 0.0$", xy=(0.03, 0.04), xycoords="axes fraction", fontsize=0.8*fs,

bbox=dict(boxstyle="round", fc="white", ec="white", alpha=0.25))

ax.set_facecolor(plt.get_cmap("viridis")(0.0))

plt.show()

78 Chapter 3. Demos

LEGWORK

Note: This tutorial was generated from a Jupyter notebook that can be downloaded here. If you’d like to reproduce the
results in the notebook, or make changes to the code, we recommend downloading this notebook and running it with
Jupyter as certain cells (mostly those that change plot styles) are excluded from the tutorials.

3.5 Demo - SNR evolution over time

This demo uses LEGWORK to show how we could track the SNR of a source if we observed it at different times

[2]: import legwork as lw
import numpy as np
import astropy.units as u
import matplotlib.pyplot as plt

[3]: %config InlineBackend.figure_format = 'retina'

plt.rc('font', family='serif')
plt.rcParams['text.usetex'] = False

(continues on next page)

3.5. Demo - SNR evolution over time 79

https://github.com/TeamLEGWORK/LEGWORK/tree/main/docs/demos/SNROverTime.ipynb

LEGWORK

(continued from previous page)

fs = 24

update various fontsizes to match
params = {'figure.figsize': (12, 8),

'legend.fontsize': fs,
'axes.labelsize': 0.7 * fs,
'xtick.labelsize': 0.6 * fs,
'ytick.labelsize': 0.6 * fs,
'axes.linewidth': 1.1,
'xtick.major.size': 7,
'xtick.minor.size': 4,
'ytick.major.size': 7,
'ytick.minor.size': 4}

plt.rcParams.update(params)

To start we can define the initial parameters of the source and work out how long it will take until it will merge.

Feel free to change these values to see how the plot changes!!

[4]: m_1 = 15 * u.Msun
m_2 = 15 * u.Msun
dist = 20 * u.kpc
ecc = 0.5
f_orb = 3e-5 * u.Hz

[5]: t_merge = lw.evol.get_t_merge_ecc(m_1=m_1, m_2=m_2, ecc_i=ecc, f_orb_i=f_orb)

Next we can evolve the system up until a year before it merges with 1000 timesteps and record the eccentricity and
frequency evolution as well as the timesteps.

[6]: ecc_evol, f_orb_evol, timesteps = lw.evol.evol_ecc(m_1=m_1,
m_2=m_2,
ecc_i=ecc,
f_orb_i=f_orb,
t_evol=t_merge - 100 * u.yr,
avoid_merger=False,
output_vars=["ecc", "f_orb",

→˓"timesteps"],
n_step=1000)

We then take these evolved values and treat them as different sources that occur at different times and calculate the
SNR for each one.

[11]: source = lw.source.Source(m_1=np.repeat(m_1, len(ecc_evol)),
m_2=np.repeat(m_2, len(ecc_evol)),
dist=np.repeat(dist, len(ecc_evol)),
ecc=ecc_evol,
f_orb=f_orb_evol, interpolate_g=False)

snr = source.get_snr()

Now we can plot the results! Let’s compare how the eccentricity, frequency and SNR change as we approach the merger.

80 Chapter 3. Demos

LEGWORK

[12]: fig, axes = plt.subplots(3, 1, figsize=(8, 15))
fig.subplots_adjust(hspace=0.3)

calculate the time before the merger rather than timesteps
t_before_merger = (t_merge - timesteps).to(u.Myr)

plot the eccentricity
axes[0].plot(t_before_merger, source.ecc, lw=3)
axes[0].set_ylabel(r"Eccentricity, e")

plot the frequency on a log scale
axes[1].plot(t_before_merger, source.f_orb, lw=3, color="tab:red")
axes[1].set_yscale("log")
axes[1].set_ylabel(r"Orbital Frequency, $f_{\rm orb}\ [\rm Hz]$")

plot the SNR on a log scale
axes[2].plot(t_before_merger, source.snr, lw=3, color="tab:purple")
axes[2].set_yscale("log")
axes[2].set_ylabel(r"Signal-to-noise Ratio, ρ")

add a line to indicate the detection threshold
axes[2].axhline(7, color="grey", linestyle="--")
axes[2].annotate("Detection Threshold (SNR = 7)", xy=(12.5, 5), ha="center", va="top",␣
→˓fontsize=0.5*fs, color="grey",

bbox=dict(boxstyle="round", fc="white", ec="white", pad=0.05))

params_string = r"$m_1 = {{{}}}\,${:latex}".format(m_1.value, m_1.unit)
params_string += "\n" + r"$m_2 = {{{}}}\,${:latex}".format(m_2.value, m_2.unit)
params_string += "\n" + r"$D = {{{}}}\,${:latex}".format(dist.value, dist.unit)

for ax in axes:
ax.set_xlim(reversed(ax.get_xlim()))
ax.grid()
ax.set_xlabel("Time before merger [Myr]")
ax.annotate(params_string, xy=(0.02, 0.96 if ax != axes[0] else 0.03),

xycoords="axes fraction", va="top" if ax != axes[0] else "bottom",
fontsize=0.5*fs, bbox=dict(boxstyle="round", fc="white", ec="white"))

plt.show()

3.5. Demo - SNR evolution over time 81

LEGWORK

82 Chapter 3. Demos

LEGWORK

Note: This tutorial was generated from a Jupyter notebook that can be downloaded here. If you’d like to reproduce the
results in the notebook, or make changes to the code, we recommend downloading this notebook and running it with
Jupyter as certain cells (mostly those that change plot styles) are excluded from the tutorials.

3.6 Demo - Verification binaries

This demo uses LEGWORK to show how you can interact with the LISA verification binaries

[2]: import legwork as lw
import numpy as np
import astropy.units as u
import matplotlib.pyplot as plt

[3]: %config InlineBackend.figure_format = 'retina'

plt.rc('font', family='serif')
plt.rcParams['text.usetex'] = False
fs = 24

update various fontsizes to match
params = {'figure.figsize': (12, 8),

'legend.fontsize': fs,
'axes.labelsize': fs,
'xtick.labelsize': 0.6 * fs,
'ytick.labelsize': 0.6 * fs,
'axes.linewidth': 1.1,
'xtick.major.size': 7,
'xtick.minor.size': 4,
'ytick.major.size': 7,
'ytick.minor.size': 4}

plt.rcParams.update(params)

In order to gain access to all of the verification binary data from Kupfer+18, you can simply run the following.

[4]: vbs = lw.source.VerificationBinaries()

Generating random values for source polarisations

This returns a Source class that contains all of the verification binary data in the usual variables, but with two extra
variables: - labels: contains the designation of each binary - true_snr: the SNR calculated by Kupfer+18

For instance, we can plot the SNR each source and label them:

[5]: fig, ax = plt.subplots(figsize=(15, 7))

ax.scatter(range(vbs.n_sources), vbs.true_snr, zorder=10, s=100)

ax.set_xticks(range(vbs.n_sources))
ax.set_xticklabels(vbs.labels, rotation=90, fontsize=15)

ax.grid()
(continues on next page)

3.6. Demo - Verification binaries 83

https://github.com/TeamLEGWORK/LEGWORK/tree/main/docs/demos/VerificationBinaries.ipynb

LEGWORK

(continued from previous page)

ax.set_ylabel("SNR from Kupfer+18")

plt.show()

It is important to highlight that SNR returned by LEGWORK will not give the same values as the true_snr. This
is because Kupfer+18 use a full LISA simulation which would not be feasible for a large number of sources and is
beyond the scope of LEGWORK. We instead would use averaged equations as outlined in our derivations and thus find
different values for the SNR.

[6]: vbs.get_snr()
print(vbs.snr / vbs.true_snr)

[0.22679184 0.31142177 0.28776068 0.49147054 0.53278135 0.64859775
0.35889764 0.4979882 0.4420345 0.22664842 0.23872143 0.17332405
0.60920814 0.43898847 0.31181575 0.42892542]

So for now let’s simply set the SNR equal to the true SNR and plot them on the sensitivity curve!

[7]: vbs.snr = np.array(vbs.true_snr)

[8]: fig, ax = lw.visualisation.plot_sensitivity_curve(frequency_range=np.logspace(-4, 0,␣
→˓1000) * u.Hz,

show=False)
fig, ax = vbs.plot_sources_on_sc(scatter_s=100, marker="*", c=vbs.m_1.to(u.Msun),

(continues on next page)

84 Chapter 3. Demos

LEGWORK

(continued from previous page)

fig=fig, ax=ax, show=False, cmap="Oranges", vmin=0.0,␣
→˓vmax=1.0)
cbar = fig.colorbar(ax.get_children()[2])
cbar.set_label(r"Primary Mass, $m_1 \, [{\rm M_{\odot}}]$")

ax.legend(handles=[ax.get_children()[1]], labels=["LISA Verification Binaries (Kupfer+18)
→˓"], fontsize=0.7*fs, markerscale=2)

plt.show()

3.6. Demo - Verification binaries 85

LEGWORK

86 Chapter 3. Demos

CHAPTER

FOUR

LEGWORK MODULES AND API REFERENCE

LEGWORK is composed of 7 different modules, each with a different focus. The diagram below illustrates how each
module is connected to the others as well as listing the general purpose of each module. In particular, note that the
source module provides a simple interface to the functions in all other modules!

The rest of this page contains the API reference for each individual function in every module, feel free to use the table
of contents on the left to easily navigate to the function you need.

4.1 legwork.evol Module

Functions using equations from Peters and Mathews (1964) to calculate inspiral times and evolve binary parameters.

87

LEGWORK

4.1.1 Functions

de_dt(e, times, beta, c_0) Compute eccentricity time derivative
integrate_de_dt(args) Wrapper that integrates legwork.evol.de_dt() with

odeint
evol_circ([t_evol, n_step, timesteps, beta, ...]) Evolve an array of circular binaries for t_evol time
evol_ecc(ecc_i[, t_evol, n_step, timesteps, ...]) Evolve an array of eccentric binaries for t_evol time
get_t_merge_circ([beta, m_1, m_2, a_i, f_orb_i]) Computes the merger time for circular binaries
get_t_merge_ecc(ecc_i[, a_i, f_orb_i, beta, ...]) Computes the merger time for binaries
t_merge_mandel_fit(ecc_i) A fit to the Peters 1964 merger time equation (5.14) by

Ilya Mandel.
evolve_f_orb_circ(f_orb_i, m_c, t_evol[, ...]) Evolve orbital frequency for t_evol time.
check_mass_freq_input([beta, m_1, m_2, a_i, ...]) Check that mass and frequency input is valid
create_timesteps_array(a_i, beta[, ecc_i, ...]) Create an array of timesteps
determine_stationarity(f_orb_i, t_evol, ecc_i) Determine whether a binary is stationary

de_dt

legwork.evol.de_dt(e, times, beta, c_0)
Compute eccentricity time derivative

Computes the evolution of the eccentricity from the emission of gravitational waves following Peters & Mathews
(1964) Eq. 5.13

Parameters
e

[float] Initial eccentricity

times
[float/array] Evolution timestep. Not actually used in function but required for use with
scipy’s scipy.integrate.odeint()

beta
[float] Constant defined in Peters and Mathews (1964) Eq. 5.9. See legwork.utils.
beta()

c_0
[float] Constant defined in Peters and Mathews (1964) Eq. 5.11. See legwork.utils.
c_0()

Returns
dedt

[float/array] Eccentricity time derivative

88 Chapter 4. LEGWORK modules and API reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html#scipy.integrate.odeint

LEGWORK

integrate_de_dt

legwork.evol.integrate_de_dt(args)
Wrapper that integrates legwork.evol.de_dt() with odeint

Parameters
args

[list] List of arguments for legwork.evol.de_dt() including [e, times, beta, c_0]

Returns
ecc_evol

[array] eccentricity evolution

evol_circ

legwork.evol.evol_circ(t_evol=None, n_step=100, timesteps=None, beta=None, m_1=None, m_2=None,
a_i=None, f_orb_i=None, output_vars='f_orb')

Evolve an array of circular binaries for t_evol time

This function implements Peters & Mathews (1964) Eq. 5.9.

Note that all of {beta, m_1, m_2, a_i, f_orb_i} must have the same dimensions.

Parameters
t_evol

[float/array] Amount of time for which to evolve each binaries. Required if timesteps is
None. Defaults to merger times.

n_steps
[int] Number of timesteps to take between t=0 and t=``t_evol``. Required if timesteps is
None. Defaults to 100.

timesteps
[float/array] Array of exact timesteps to output when evolving each binary. Must be mono-
tonically increasing and start with t=0. Either supply a 1D array to use for every binary or a
2D array that has a different array of timesteps for each binary. timesteps is used in place of
t_evol and n_steps and takes precedence over them. Note that these are not the timesteps
that will be taken whilst the sources are evolved since these are determined adaptively during
the integration by scipy’s odeint

beta
[float/array] Constant defined in Peters and Mathews (1964) Eq. 5.9. See legwork.utils.
beta() (if supplied m_1 and m_2 are ignored)

m_1
[float/array] Primary mass (required if beta is None or if output_vars contains a fre-
quency)

m_2
[float/array] Secondary mass (required if beta is None or if output_vars contains a fre-
quency)

a_i
[float/array] Initial semi-major axis (if supplied f_orb_i is ignored)

f_orb_i
[float/array] Initial orbital frequency (required if a_i is None)

4.1. legwork.evol Module 89

LEGWORK

output_vars
[str/array] List of ordered output vars, or a single var. Choose from any of timesteps, a,
f_orb and f_GW for which of timesteps, semi-major axis and orbital/GW frequency that you
want. Default is f_orb.

Returns
evolution

[array] Array containing any of semi-major axis, timesteps and frequency evolution. Content
determined by output_vars.

evol_ecc

legwork.evol.evol_ecc(ecc_i, t_evol=None, n_step=100, timesteps=None, beta=None, m_1=None, m_2=None,
a_i=None, f_orb_i=None, output_vars=['ecc', 'f_orb'], n_proc=1, avoid_merger=True,
exact_t_merge=False, t_before=<Quantity 1. Myr>, t_merge=None)

Evolve an array of eccentric binaries for t_evol time

This function use Peters & Mathews (1964) Eq. 5.11 and 5.13.

Note that all of {beta, m_1, m_2, ecc_i, a_i, f_orb_i} must have the same dimensions.

Parameters
ecc_i

[float/array] Initial eccentricity

t_evol
[float/array] Amount of time for which to evolve each binaries. Required if timesteps is
None. Defaults to merger times.

n_steps
[int] Number of timesteps to take between t=0 and t=``t_evol``. Required if timesteps is
None. Defaults to 100.

timesteps
[float/array] Array of exact timesteps to take when evolving each binary. Must be monoton-
ically increasing and start with t=0. Either supply a 1D array to use for every binary or a 2D
array that has a different array of timesteps for each binary. timesteps is used in place of
t_evol and n_steps and takes precedence over them.

beta
[float/array] Constant defined in Peters and Mathews (1964) Eq. 5.9. See legwork.utils.
beta() (if supplied m_1 and m_2 are ignored)

m_1
[float/array] Primary mass (required if beta is None or if output_vars contains a fre-
quency)

m_2
[float/array] Secondary mass (required if beta is None or if output_vars contains a fre-
quency)

a_i
[float/array] Initial semi-major axis (if supplied f_orb_i is ignored)

f_orb_i
[float/array] Initial orbital frequency (required if a_i is None)

90 Chapter 4. LEGWORK modules and API reference

LEGWORK

output_vars
[array] List of ordered output vars, choose from any of timesteps, ecc, a, f_orb and
f_GW for which of timesteps, eccentricity, semi-major axis and orbital/GW frequency that
you want. Default is [ecc, f_orb]

n_proc
[int] Number of processors to split eccentricity evolution over, where the default is n_proc=1

avoid_merger
[boolean] Whether to avoid integration around the merger of the binary. Warning: setting
this to false will result in many LSODA errors to be outputted since the derivatives get so
large.

exact_t_merge
[boolean] Whether to calculate the merger time exactly or use a fit (only relevant when
avoid_merger is set to True

t_before
[float] How much time before the merger to cutoff the integration (default is 1 Myr - this will
prevent all LSODA warnings for e < 0.95, you may need to increase this time if your sample
is more eccentric than this)

t_merge
[float/array] Merger times for each source to be evolved. Only used when
avoid_merger=True. If None then these will be automatically calculated either ap-
proximately or exactly based on the values of exact_t_merge.

Returns
evolution

[array] Array possibly containing eccentricity, semi-major axis, timesteps and frequency
evolution. Content determined by output_vars

get_t_merge_circ

legwork.evol.get_t_merge_circ(beta=None, m_1=None, m_2=None, a_i=None, f_orb_i=None)
Computes the merger time for circular binaries

This function implements Peters & Mathews (1964) Eq. 5.10

Parameters
beta

[float/array] Constant defined in Peters and Mathews (1964) Eq. 5.9. See legwork.utils.
beta() (if supplied m_1 and m_2 are ignored)

m_1
[float/array] Primary mass (required if beta is None)

m_2
[float/array] Secondary mass (required if beta is None)

a_i
[float/array] Initial semi-major axis (if supplied f_orb_i is ignored)

f_orb_i
[float/array] Initial orbital frequency (required if a_i is None)

Returns

4.1. legwork.evol Module 91

LEGWORK

t_merge
[float/array] Merger time

get_t_merge_ecc

legwork.evol.get_t_merge_ecc(ecc_i, a_i=None, f_orb_i=None, beta=None, m_1=None, m_2=None,
small_e_tol=0.15, large_e_tol=0.9999, exact=True)

Computes the merger time for binaries

This function implements Peters (1964) Eq. 5.10, 5.14 and the two unlabelled equations after 5.14 (using a
different one depending on the eccentricity of each binary)

Parameters
ecc_i

[float/array] Initial eccentricity (if ecc_i is known to be 0.0 then use get_t_merge_circ in-
stead)

a_i
[float/array] Initial semi-major axis (if supplied f_orb_i is ignored)

f_orb_i
[float/array] Initial orbital frequency (required if a_i is None)

beta
[float/array] Constant defined in Peters and Mathews (1964) Eq. 5.9. See legwork.utils.
beta() (if supplied m_1 and m_2 are ignored)

m_1
[float/array] Primary mass (required if beta is None)

m_2
[float/array] Secondary mass (required if beta is None)

small_e_tol
[float] Eccentricity below which to apply the small e approximation (see first unlabelled
equation following Eq. 5.14 of Peters 1964), defaults to 0.15 to keep relative error below
approximately 2%

large_e_tol
[float] Eccentricity above which to apply the large e approximation (see second unlabelled
equation following Eq. 5.14 of Peters 1964), defaults to 0.9999 to keep relative error below
approximately 2%

exact
[boolean] Whether to calculate the merger time exactly with numerical integration or to
instead use the fit from Mandel 2021 (see legwork.evol.t_merge_mandel_fit())

Returns
t_merge

[float/array] Merger time

92 Chapter 4. LEGWORK modules and API reference

LEGWORK

t_merge_mandel_fit

legwork.evol.t_merge_mandel_fit(ecc_i)
A fit to the Peters 1964 merger time equation (5.14) by Ilya Mandel. This function gives a fac-
tor which, when multiplied by the circular merger time, gives the eccentric merger time with 3% er-
rors. We add a rudimentary polynomial fit to further reduce these errors to within 0.5%. ADS Link:
https://ui.adsabs.harvard.edu/abs/2021RNAAS. . . 5..223M/abstract

Parameters
ecc_i

[float/array] Initial eccentricity

Returns
factor

[float/array] Factor by which to multiply the circular merger timescale by to get the overall
merger time.

evolve_f_orb_circ

legwork.evol.evolve_f_orb_circ(f_orb_i, m_c, t_evol, ecc_i=0.0, merge_f=<Quantity 1.e+09 Hz>)
Evolve orbital frequency for t_evol time.

This gives the exact final frequency for circular binaries. However, it will overestimate the final frequency for an
eccentric binary and if an exact value is required then legwork.evol.evol_ecc() should be used instead.

Parameters
f_orb_i

[float/array] Initial orbital frequency

m_c
[float/array] Chirp mass

t_evol
[float] Time over which the frequency evolves

ecc_i
[float/array] Initial eccentricity

merge_f
[float] Frequency to assign if the binary has already merged after t_evol

Returns
f_orb_f

[bool/array] Final orbital frequency

4.1. legwork.evol Module 93

https://ui.adsabs.harvard.edu/abs/2021RNAAS...5..223M/abstract

LEGWORK

check_mass_freq_input

legwork.evol.check_mass_freq_input(beta=None, m_1=None, m_2=None, a_i=None, f_orb_i=None)
Check that mass and frequency input is valid

Helper function to check that either beta or (m_1 and m_2) is provided and that a_i or f_orb_i is provided as
well as calculate quantities that are not passed as arguments.

Parameters
beta

[float/array] Constant defined in Peters and Mathews (1964) Eq. 5.9. See legwork.utils.
beta() (if supplied m_1 and m_2 are ignored)

m_1
[float/array] Primary mass (required if beta is None)

m_2
[float/array] Secondary mass (required if beta is None)

a_i
[float/array] Initial semi-major axis (if supplied f_orb_i is ignored)

f_orb_i
[float/array] Initial orbital frequency (required if a_i is None)

Returns
beta

[float/array] Constant defined in Peters and Mathews (1964) Eq. 5.9. See legwork.utils.
beta()

a_i
[float/array] Initial semi-major axis

create_timesteps_array

legwork.evol.create_timesteps_array(a_i, beta, ecc_i=None, t_evol=None, n_step=100, timesteps=None)
Create an array of timesteps

Parameters
a_i

[float/array] Initial semi-major axis

beta
[float/array] Constant defined in Peters and Mathews (1964) Eq. 5.9. See legwork.utils.
beta()

ecc_i
[float/array] Initial eccentricity

t_evol
[float/array] Amount of time for which to evolve each binaries. Required if timesteps is
None. If None, then defaults to merger times.

n_steps
[int] Number of timesteps to take between t=0 and t=``t_evol``. Required if timesteps is
None. Defaults to 100.

94 Chapter 4. LEGWORK modules and API reference

LEGWORK

timesteps
[float/array] Array of exact timesteps to output when evolving each binary. Must be mono-
tonically increasing and start with t=0. Either supply a 1D array to use for every binary or a
2D array that has a different array of timesteps for each binary. timesteps is used in place of
t_evol and n_steps and takes precedence over them. Note that these are not the timesteps
that will be taken whilst the sources are evolved since these are determined adaptively during
the integration by scipy’s odeint

Returns
timesteps

[float/array] Array of timesteps for each binary

determine_stationarity

legwork.evol.determine_stationarity(f_orb_i, t_evol, ecc_i, m_1=None, m_2=None, m_c=None,
stat_tol=0.01)

Determine whether a binary is stationary

Check how much a binary’s orbital frequency changes over t_evol time. This function provides a conservative
estimate in that some binaries that are stationary may be marked as evolving. This is because the eccentricity
also evolves but only use the initial value. Solving this in full would require the same amount of time as assuming
the binary is evolving.

Parameters
forb_i

[float/array] Initial orbital frequency

t_evol
[float] Time over which the frequency evolves

ecc
[float/array] Initial eccentricity

m_1
[float/array] Primary mass (required if m_c is None)

m_2
[float/array] Secondary mass (required if m_c is None)

m_c
[float/array] Chirp mass (overrides m_1 and m_2)

stat_tol
[float] Fractional change in frequency above which we do not consider a binary to be station-
ary

Returns
stationary

[bool/array] Mask of whether each binary is stationary

Tip: Feeling a bit spun around by all this binary evolution? Check out our tutorial on using functions in the evol
module here!

4.1. legwork.evol Module 95

LEGWORK

4.2 legwork.psd Module

Functions to compute various power spectral densities for sensitivity curves

4.2.1 Functions

load_response_function(f[, fstar]) Load in LISA response function from file
approximate_response_function(f, fstar) Approximate LISA response function
power_spectral_density(f[, instrument, ...]) Calculates the effective power spectral density for all in-

struments.
lisa_psd(f[, t_obs, L, approximate_R, ...]) Calculates the effective LISA power spectral density

sensitivity curve
tianqin_psd(f[, L, t_obs, approximate_R, ...]) Calculates the effective TianQin power spectral density

sensitivity curve
get_confusion_noise(f, model[, t_obs]) Calculate the confusion noise for a particular model
get_confusion_noise_robson19(f[, t_obs]) Calculate the confusion noise using the model from Rob-

son+19 Eq.
get_confusion_noise_huang20(f[, t_obs]) Calculate the confusion noise using the model from

Huang+20 Table II.
get_confusion_noise_thiele21(f) Calculate the confusion noise using the model from

Thiele+20 Eq.

load_response_function

legwork.psd.load_response_function(f, fstar=0.01909)
Load in LISA response function from file

Load response function and interpolate values for a range of frequencies. Adapted from https://github.com/
eXtremeGravityInstitute/LISA_Sensitivity to use binary files instead of text. See Robson+19 for more details.

Parameters
f

[float/array] Frequencies at which to evaluate the sensitivity curve

fstar
[float] f* from Robson+19 (default = 19.09 mHz)

Returns
R

[float/array] LISA response function at each frequency

96 Chapter 4. LEGWORK modules and API reference

https://github.com/eXtremeGravityInstitute/LISA_Sensitivity
https://github.com/eXtremeGravityInstitute/LISA_Sensitivity

LEGWORK

approximate_response_function

legwork.psd.approximate_response_function(f, fstar)
Approximate LISA response function

Use Eq.9 of Robson+19 to approximate the LISA response function.

Parameters
f

[float/array] Frequencies at which to evaluate the sensitivity curve

fstar
[float] f* from Robson+19 (default = 19.09 mHz)

Returns
R

[float/array] response function at each frequency

power_spectral_density

legwork.psd.power_spectral_density(f, instrument='LISA', custom_psd=None, t_obs='auto', L='auto',
approximate_R=False, confusion_noise='auto')

Calculates the effective power spectral density for all instruments.

Parameters
f

[float/array] Frequencies at which to evaluate the sensitivity curve

instrument: {{ `LISA`, `TianQin`, `custom` }}
Instrument to use. LISA is used by default. Choosing custom uses custom_psd to compute
PSD.

custom_psd
[function] Custom function for computing the PSD. Must take the same arguments as
legwork.psd.lisa_psd() even if it ignores some.

t_obs
[float] Observation time (default 4 years for LISA and 5 years for TianQin)

L
[float] LISA arm length in metres

approximate_R
[boolean] Whether to approximate the response function (default: no)

confusion_noise
[various] Galactic confusion noise. Acceptable inputs are either one of the values listed in
legwork.psd.get_confusion_noise(), “auto” (automatically selects confusion noise
based on instrument - ‘robson19’ if LISA and ‘huang20’ if TianQin), or a custom function
that gives the confusion noise at each frequency for a given mission length where it would
be called by running noise(f, t_obs) and return a value with units of inverse Hertz

Returns
psd

[float/array] Effective power strain spectral density

4.2. legwork.psd Module 97

LEGWORK

lisa_psd

legwork.psd.lisa_psd(f, t_obs=<Quantity 4. yr>, L=<Quantity 2.5e+09 m>, approximate_R=False,
confusion_noise='robson19')

Calculates the effective LISA power spectral density sensitivity curve

Using equations from Robson+19, calculate the effective LISA power spectral density for the sensitivity curve

Parameters
f

[float/array] Frequencies at which to evaluate the sensitivity curve

t_obs
[float] Observation time (default 4 years)

L
[float] LISA arm length in metres (default = 2.5Gm)

approximate_R
[boolean] Whether to approximate the response function (default: no)

confusion_noise
[various] Galactic confusion noise. Acceptable inputs are one of the values listed in
legwork.psd.get_confusion_noise() or a custom function that gives the confusion
noise at each frequency for a given mission length where it would be called by running
noise(f, t_obs) and return a value with units of inverse Hertz

Returns
Sn

[float/array] Effective power strain spectral density

tianqin_psd

legwork.psd.tianqin_psd(f, L=<Quantity 173205.08075689 km>, t_obs=<Quantity 5. yr>,
approximate_R=None, confusion_noise='huang20')

Calculates the effective TianQin power spectral density sensitivity curve

Using Eq. 13 from Huang+20, calculate the effective TianQin PSD for the sensitivity curve

Note that this function includes an extra factor of 10/3 compared Eq. 13 in Huang+20, since Huang+20 absorbs
the factor into the waveform but we instead follow the same convention as Robson+19 for consistency and include
it in this ‘effective’ PSD function instead.

Parameters
f

[float/array] Frequencies at which to evaluate the sensitivity curve

L
[float] Arm length

t_obs
[float] Observation time (default 5 years)

approximate_R
[boolean] Ignored for this function

98 Chapter 4. LEGWORK modules and API reference

LEGWORK

confusion_noise
[various] Galactic confusion noise. Acceptable inputs are one of the values listed in
legwork.psd.get_confusion_noise() or a custom function that gives the confusion
noise at each frequency for a given mission length where it would be called by running
noise(f, t_obs) and return a value with units of inverse Hertz

Returns
psd

[float/array] Effective power strain spectral density

get_confusion_noise

legwork.psd.get_confusion_noise(f, model, t_obs='auto')
Calculate the confusion noise for a particular model

Parameters
f

[float/array] Frequencies at which to calculate the confusion noise, must have units of fre-
quency

model
[str, optional] Which model to use for the confusion noise. Must be one of ‘robson19’,
‘huang20’, ‘thiele21’ or None.

t_obs
[float, optional] Mission length. Default is 4 years for robson19 and thiele21 and 5 years for
huang20.

Returns
confusion_noise

[float/array] The confusion noise at each frequency.

Raises
ValueError

When a model other than those defined above is used.

get_confusion_noise_robson19

legwork.psd.get_confusion_noise_robson19(f, t_obs=<Quantity 4. yr>)
Calculate the confusion noise using the model from Robson+19 Eq. 14 and Table 1

Also note that this fit is designed based on LISA sensitivity and so it is likely not sensible to apply it to TianQin
or other missions.

Parameters
f

[float/array] Frequencies at which to calculate the confusion noise, must have units of fre-
quency

t_obs
[float, optional] Mission length, parameters are defined for 0.5, 1, 2 and 4 years, the closest
mission length to the one inputted will be used. By default 4 years.

Returns

4.2. legwork.psd Module 99

LEGWORK

confusion_noise
[float/array] The confusion noise at each frequency

get_confusion_noise_huang20

legwork.psd.get_confusion_noise_huang20(f, t_obs=<Quantity 5. yr>)
Calculate the confusion noise using the model from Huang+20 Table II. Note that we set the confusion noise to
be exactly 0 outside of the range [1e-4, 1] Hz as the fits are not designed to be used outside of this range.

Also note that this fit is designed based on TianQin sensitivity and so it is likely not sensible to apply it to LISA
or other missions.

Parameters
f

[float/array] Frequencies at which to calculate the confusion noise, must have units of fre-
quency

t_obs
[float, optional] Mission length, parameters are defined for 0.5, 1, 2, 4 and 5 years, the closest
mission length to the one inputted will be used. By default 5 years.

Returns
confusion_noise

[float/array] The confusion noise at each frequency

get_confusion_noise_thiele21

legwork.psd.get_confusion_noise_thiele21(f)
Calculate the confusion noise using the model from Thiele+20 Eq. 16 and Table 1. This fit uses a metallicity-
dependent binary fraction.

Note: This fit only applies to LISA and only when the mission length is 4 years.

Parameters
f

[float/array] Frequencies at which to calculate the confusion noise, must have units of fre-
quency

Returns
confusion_noise

[float/array] The confusion noise at each frequency

4.3 legwork.snr Module

Functions to calculate signal-to-noise ratio in four different cases

100 Chapter 4. LEGWORK modules and API reference

LEGWORK

4.3.1 Functions

snr_circ_stationary(m_c, f_orb, dist, t_obs) Computes SNR for circular and stationary sources
snr_ecc_stationary(m_c, f_orb, ecc, dist, ...) Computes SNR for eccentric and stationary sources
snr_circ_evolving(m_1, m_2, f_orb_i, dist, ...) Computes SNR for circular and stationary sources
snr_ecc_evolving(m_1, m_2, f_orb_i, dist, ...) Computes SNR for eccentric and evolving sources.

snr_circ_stationary

legwork.snr.snr_circ_stationary(m_c, f_orb, dist, t_obs, position=None, polarisation=None,
inclination=None, interpolated_g=None, interpolated_sc=None,
**kwargs)

Computes SNR for circular and stationary sources

Parameters
m_c

[float/array] Chirp mass

f_orb
[float/array] Orbital frequency

dist
[float/array] Distance to the source

t_obs
[float] Total duration of the observation

position
[SkyCoord/array, optional] Sky position of source. Must be specified using Astropy’s
astropy.coordinates.SkyCoord class.

polarisation
[float/array, optional] GW polarisation angle of the source. Must have astropy angular units.

inclination
[float/array, optional] Inclination of the source. Must have astropy angular units.

interpolated_g
[function] A function returned by scipy.interpolate.interp2d that computes g(n,e)
from Peters (1964). The code assumes that the function returns the output sorted as with the
interp2d returned functions (and thus unsorts). Default is None and uses exact g(n,e) in this
case.

interpolated_sc
[function] A function returned by scipy.interpolate.interp1d that computes the LISA
sensitivity curve. Default is None and uses exact values. Note: take care to ensure that
your interpolated function has the same LISA observation time as t_obs and uses the same
instrument.

**kwargs
[various] Keyword args are passed to legwork.psd.power_spectral_density(), see
those docs for details on possible arguments.

Returns
snr

[float/array] SNR for each binary

4.3. legwork.snr Module 101

https://docs.astropy.org/en/stable/api/astropy.coordinates.SkyCoord.html#astropy.coordinates.SkyCoord
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp2d.html#scipy.interpolate.interp2d
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.html#scipy.interpolate.interp1d

LEGWORK

snr_ecc_stationary

legwork.snr.snr_ecc_stationary(m_c, f_orb, ecc, dist, t_obs, harmonics_required, interpolated_g=None,
interpolated_sc=None, ret_max_snr_harmonic=False,
ret_snr2_by_harmonic=False, **kwargs)

Computes SNR for eccentric and stationary sources

Parameters
m_c

[float/array] Chirp mass

f_orb
[float/array] Orbital frequency

ecc
[float/array] Eccentricity

dist
[float/array] Distance to the source

t_obs
[float] Total duration of the observation

harmonics_required
[integer] Maximum integer harmonic to compute

interpolated_g
[function] A function returned by scipy.interpolate.interp2d that computes g(n,e)
from Peters (1964). The code assumes that the function returns the output sorted as with the
interp2d returned functions (and thus unsorts). Default is None and uses exact g(n,e) in this
case.

interpolated_sc
[function] A function returned by scipy.interpolate.interp1d that computes the LISA
sensitivity curve. Default is None and uses exact values. Note: take care to ensure that
your interpolated function has the same LISA observation time as t_obs and uses the same
instrument.

ret_max_snr_harmonic
[boolean] Whether to return (in addition to the snr), the harmonic with the maximum SNR

ret_snr2_by_harmonic
[boolean] Whether to return the SNR^2 in each individual harmonic rather than the total.
The total can be retrieving by summing and then taking the square root.

**kwargs
[various] Keyword args are passed to legwork.psd.power_spectral_density(), see
those docs for details on possible arguments.

Returns
snr

[float/array] SNR for each binary

max_snr_harmonic
[int/array] harmonic with maximum SNR for each binary (only returned if
ret_max_snr_harmonic=True)

102 Chapter 4. LEGWORK modules and API reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp2d.html#scipy.interpolate.interp2d
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.html#scipy.interpolate.interp1d

LEGWORK

snr_circ_evolving

legwork.snr.snr_circ_evolving(m_1, m_2, f_orb_i, dist, t_obs, n_step, t_merge=None, interpolated_g=None,
interpolated_sc=None, **kwargs)

Computes SNR for circular and stationary sources

Parameters
m_1

[float/array] Primary mass

m_2
[float/array] Secondary mass

f_orb_i
[float/array] Initial orbital frequency

dist
[float/array] Distance to the source

t_obs
[float] Total duration of the observation

n_step
[int] Number of time steps during observation duration

t_merge
[float/array] Time until merger

interpolated_g
[function] A function returned by scipy.interpolate.interp2d that computes g(n,e)
from Peters (1964). The code assumes that the function returns the output sorted as with the
interp2d returned functions (and thus unsorts). Default is None and uses exact g(n,e) in this
case.

interpolated_sc
[function] A function returned by scipy.interpolate.interp1d that computes the LISA
sensitivity curve. Default is None and uses exact values. Note: take care to ensure that
your interpolated function has the same LISA observation time as t_obs and uses the same
instrument.

**kwargs
[various] Keyword args are passed to legwork.psd.power_spectral_density(), see
those docs for details on possible arguments.

Returns
sn

[float/array] SNR for each binary

4.3. legwork.snr Module 103

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp2d.html#scipy.interpolate.interp2d
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.html#scipy.interpolate.interp1d

LEGWORK

snr_ecc_evolving

legwork.snr.snr_ecc_evolving(m_1, m_2, f_orb_i, dist, ecc, harmonics_required, t_obs, n_step,
t_merge=None, interpolated_g=None, interpolated_sc=None, n_proc=1,
ret_max_snr_harmonic=False, ret_snr2_by_harmonic=False, **kwargs)

Computes SNR for eccentric and evolving sources.

Note that this function will not work for exactly circular (ecc = 0.0) binaries.

Parameters
m_1

[float/array] Primary mass

m_2
[float/array] Secondary mass

f_orb_i
[float/array] Initial orbital frequency

dist
[float/array] Distance to the source

ecc
[float/array] Eccentricity

harmonics_required
[int] Maximum integer harmonic to compute

t_obs
[float] Total duration of the observation

n_step
[int] Number of time steps during observation duration

t_merge
[float/array] Time until merger

interpolated_g
[function] A function returned by scipy.interpolate.interp2d that computes g(n,e)
from Peters (1964). The code assumes that the function returns the output sorted as with the
interp2d returned functions (and thus unsorts). Default is None and uses exact g(n,e) in this
case.

interpolated_sc
[function] A function returned by scipy.interpolate.interp1d that computes the LISA
sensitivity curve. Default is None and uses exact values. Note: take care to ensure that
your interpolated function has the same LISA observation time as t_obs and uses the same
instrument.

n_proc
[int] Number of processors to split eccentricity evolution over, where the default is n_proc=1

ret_max_snr_harmonic
[boolean] Whether to return (in addition to the snr), the harmonic with the maximum SNR

ret_snr2_by_harmonic
[boolean] Whether to return the SNR^2 in each individual harmonic rather than the total.
The total can be retrieving by summing and then taking the square root.

104 Chapter 4. LEGWORK modules and API reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp2d.html#scipy.interpolate.interp2d
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.html#scipy.interpolate.interp1d

LEGWORK

**kwargs
[various] Keyword args are passed to legwork.psd.power_spectral_density(), see
those docs for details on possible arguments.

Returns
snr

[float/array] SNR for each binary

max_snr_harmonic
[int/array] harmonic with maximum SNR for each binary (only returned if
ret_max_snr_harmonic=True)

4.4 legwork.source Module

A collection of classes for analysing gravitational wave sources

4.4.1 Classes

Source(m_1, m_2, ecc, dist[, n_proc, f_orb, ...]) Class for generic GW sources
Stationary(m_1, m_2, ecc, dist[, n_proc, ...]) Subclass for sources that are stationary
Evolving(m_1, m_2, ecc, dist[, n_proc, ...]) Subclass for sources that are evolving
VerificationBinaries() Generate a Source class with the LISA verification bina-

ries preloaded.

Source

class legwork.source.Source(m_1, m_2, ecc, dist, n_proc=1, f_orb=None, a=None, position=None,
polarisation=None, inclination=None, weights=None, gw_lum_tol=0.05,
stat_tol=0.01, interpolate_g=True, interpolate_sc=True, sc_params={})

Bases: object

Class for generic GW sources

This class is for analysing a generic set of sources that may be stationary/evolving and circular/eccentric. If the
type of sources are known, then a more specific subclass may be more useful

Parameters
m_1

[float/array] Primary mass. Must have astropy units of mass.

m_2
[float/array] Secondary mass. Must have astropy units of mass.

ecc
[float/array] Initial eccentricity

dist
[float/array] Luminosity distance to source. Must have astropy units of distance.

n_proc
[int] Number of processors to split eccentric evolution over if needed

4.4. legwork.source Module 105

https://docs.python.org/3/library/functions.html#object

LEGWORK

f_orb
[float/array] Orbital frequency (either a or f_orb must be supplied). This takes precedence
over a. Must have astropy units of frequency.

a
[float/array] Semi-major axis (either a or f_orb must be supplied). Must have astropy units
of length.

position
[SkyCoord/array, optional] Sky position of source. Must be specified using Astropy’s
astropy.coordinates.SkyCoord class.

polarisation
[float/array, optional] GW polarisation angle of the source. Must have astropy angular units.

inclination
[float/array, optional] Inclination of the source. Must have astropy angular units.

weights
[float/array, optional] Statistical weights associated with each sample (used for plotted), de-
fault is equal weights

gw_lum_tol
[float] Allowed error on the GW luminosity when calculating SNRs. This is used to calculate
maximum harmonics needed and transition between ‘eccentric’ and ‘circular’. This variable
should be updated using the function legwork.source.Source.update_gw_lum_tol()
(not Source._gw_lum_tol =) to ensure the cached calculations match the current toler-
ance.

stat_tol
[float] Fractional change in frequency over mission length above which a binary should be
considered to be stationary

interpolate_g
[boolean] Whether to interpolate the g(n,e) function from Peters (1964). This results in a
faster runtime for large collections of sources.

interpolate_sc
[boolean] Whether to interpolate the LISA sensitivity curve

sc_params
[dict] Parameters for interpolated sensitivity curve. Include any of instrument,
custom_psd, t_obs, L, approximate_R and confusion_noise. Default values are:
“LISA”, None, “auto”, “auto”, False and “auto”.

Raises
ValueError

If both f_orb and a are missing. If only part of the position, inclination, and polarization
are supplied. If array-like parameters don’t have the same length.

AssertionError
If a parameter is missing units

Attributes
m_c

[float/array] Chirp mass. Set using m_1 and m_2 in legwork.utils.chirp_mass()

ecc_tol
[float] Eccentricity above which a binary is considered eccentric. Set by legwork.source.
Source.find_eccentric_transition()

106 Chapter 4. LEGWORK modules and API reference

https://docs.astropy.org/en/stable/api/astropy.coordinates.SkyCoord.html#astropy.coordinates.SkyCoord

LEGWORK

snr
[float/array] Signal-to-noise ratio. Set by legwork.source.Source.get_snr()

max_snr_harmonic
[int/array] Harmonic with the maximum snr. Set by legwork.source.Source.
get_snr()

n_sources
[int] Number of sources in class

Methods Summary

create_harmonics_functions() Create two harmonics related functions as methods
for the Source class

evolve_sources(t_evol[, create_new_class]) Evolve sources forward in time for t_evol amount
of time.

find_eccentric_transition() Find the eccentricity at which we must treat binaries
at eccentric.

get_h_0_n(harmonics[, which_sources]) Computes the strain for binaries for the given
harmonics.

get_h_c_n(harmonics[, which_sources]) Computes the characteristic strain for binaries for the
given harmonics.

get_merger_time([save_in_class, ...]) Get the merger time for each source.
get_snr([t_obs, instrument, custom_psd, L, ...]) Computes the SNR for a generic binary.
get_snr_evolving([t_obs, instrument, ...]) Computes the SNR assuming an evolving binary
get_snr_stationary([t_obs, instrument, ...]) Computes the SNR assuming a stationary binary
get_source_mask([circular, stationary, t_obs]) Produce a mask of the sources.
plot_source_variables(xstr[, ystr, ...]) Plot distributions of Source variables.
plot_sources_on_sc([snr_cutoff, fig, ax, ...]) Plot all sources in the class on the sensitivity curve
set_g(interpolate_g) Set Source g function if user wants to interpolate

g(n,e).
set_sc() Set Source sensitivity curve function
update_gw_lum_tol(gw_lum_tol) Update GW luminosity tolerance.
update_sc_params(sc_params) Update sensitivity curve parameters

Methods Documentation

create_harmonics_functions()

Create two harmonics related functions as methods for the Source class

The first function is stored at self.harmonics_required(ecc). This calculates the index of the highest
harmonic required to calculate the SNR of a system with eccentricity ecc assuming the provided tolerance
gw_lum_tol. This is equivalent to the total number of harmonics required since, when calculating SNR,
harmonics in the range [1, harmonics_required(ecc)] are used. Note that the value returned by the function
slightly conservative as we apply ceil to the interpolation result.

The second function is stored at self.max_strain_harmonic(ecc). This calculates the harmonic with
the maximum strain for a system with eccentricity ecc.

evolve_sources(t_evol, create_new_class=False)
Evolve sources forward in time for t_evol amount of time. If create_new_class is True then save the
updated sources in a new Source class, otherwise, update the values in this class.

Parameters

4.4. legwork.source Module 107

LEGWORK

t_evol
[float/array] Amount of time to evolve sources. Either a single value for all sources or an
array of values corresponding to each source.

create_new_class
[bool, optional] Whether to save the evolved binaries in a new class or not. If not simply
update the current class, by default False.

Returns
evolved_sources

[Source] The new class with evolved sources, only returned if create_new_class is
True.

find_eccentric_transition()

Find the eccentricity at which we must treat binaries at eccentric. We define this as the maximum eccentric-
ity at which the n=2 harmonic is the total GW luminosity given the tolerance self._gw_lum_tol. Store
the result in self.ecc_tol

get_h_0_n(harmonics, which_sources=None)
Computes the strain for binaries for the given harmonics. Use which_sources to select a subset of the
sources. Merged sources are set to have 0.0 strain.

Parameters
harmonics

[int/array] Harmonic(s) at which to calculate the strain

which_sources
[boolean/array] Mask on which sources to compute values for (default is all)

Returns
h_0_n

[float/array] Dimensionless strain in the quadrupole approximation (unitless) shape of ar-
ray is (number of sources, number of harmonics)

get_h_c_n(harmonics, which_sources=None)
Computes the characteristic strain for binaries for the given harmonics. Use which_sources to select a
subset of the sources. Merged sources are set to have 0.0 characteristic strain.

Parameters
harmonics

[int/array] Harmonic(s) at which to calculate the strain

which_sources `boolean/array`
Mask on which sources to compute values for (default is all)

Returns
h_c_n

[float/array] Dimensionless characteristic strain in the quadrupole approximation shape of
array is (number of sources, number of harmonics)

get_merger_time(save_in_class=True, which_sources=None, exact=True)
Get the merger time for each source. Set save_in_class to true to save the values as an instance variable
in the class. Use which_sources to select a subset of the sources in the class. Note that if save_in_class
is set to True, which_sources will be ignored.

Parameters

108 Chapter 4. LEGWORK modules and API reference

LEGWORK

save_in_class
[bool, optional] Whether the save the result into the class as an instance variable, by default
True

which_sources
[bool/array, optional] A mask for the subset of sources for which to calculate the merger
time, by default all sources (None)

exact
[boolean, optional] Whether to calculate the merger time exactly with numerical integration
or to instead use a fit

Returns
t_merge

[float/array] Merger times

get_snr(t_obs=None, instrument=None, custom_psd=None, L=None, approximate_R=None,
confusion_noise=None, n_step=100, verbose=False, re_interpolate_sc=True,
which_sources=None)

Computes the SNR for a generic binary. Also records the harmonic with maximum SNR for each binary
in self.max_snr_harmonic.

Parameters
t_obs

[array] Observation duration (default: value from sc_params)

instrument
[{{ ‘LISA’, ‘TianQin’, ‘custom’ }}] Instrument to observe with. If ‘custom’ then
custom_psd must be supplied. (default: value from sc_params)

custom_psd
[function] Custom function for computing the PSD. Must take the same arguments as
legwork.psd.lisa_psd() even if it ignores some. (default: function from sc_params)

L
[float] LISA arm length in metres

approximate_R
[boolean] Whether to approximate the response function (default: no)

confusion_noise
[various] Galactic confusion noise. Acceptable inputs are either one of the values listed in
legwork.psd.get_confusion_noise(), “auto” (automatically selects confusion noise
based on instrument - ‘robson19’ if LISA and ‘huang20’ if TianQin), or a custom function
that gives the confusion noise at each frequency for a given mission length where it would
be called by running noise(f, t_obs) and return a value with units of inverse Hertz

n_step
[int] Number of time steps during observation duration

verbose
[boolean] Whether to print additional information to user

re_interpolate_sc
[boolean] Whether to re-interpolate the sensitivity curve if the observation time or instru-
ment changes. If False, warning will instead be given

which_sources
[boolean/array] Mask of which sources to calculate the SNR for. If None then calculate
SNR for all sources.

4.4. legwork.source Module 109

LEGWORK

Returns
SNR

[array] The signal-to-noise ratio

get_snr_evolving(t_obs=None, instrument=None, custom_psd=None, L=None, approximate_R=None,
confusion_noise=None, re_interpolate_sc=True, n_step=100, which_sources=None,
verbose=False)

Computes the SNR assuming an evolving binary

Parameters
t_obs

[array] Observation duration (default: follow sc_params)

instrument
[{{ ‘LISA’, ‘TianQin’, ‘custom’ }}] Instrument to observe with. If ‘custom’ then
custom_psd must be supplied.

custom_psd
[function] Custom function for computing the PSD. Must take the same arguments as
legwork.psd.lisa_psd() even if it ignores some.

L
[float] LISA arm length in metres

approximate_R
[boolean] Whether to approximate the response function (default: no)

confusion_noise
[various] Galactic confusion noise. Acceptable inputs are either one of the values listed in
legwork.psd.get_confusion_noise(), “auto” (automatically selects confusion noise
based on instrument - ‘robson19’ if LISA and ‘huang20’ if TianQin), or a custom function
that gives the confusion noise at each frequency for a given mission length where it would
be called by running noise(f, t_obs) and return a value with units of inverse Hertz

re_interpolate_sc
[boolean] Whether to re-interpolate the sensitivity curve if the observation time or instru-
ment changes. If False, warning will instead be given

n_step
[int] Number of time steps during observation duration

which_sources
[bool/array] Mask on which sources to consider evolving and calculate (default is all
sources in Class)

verbose
[boolean] Whether to print additional information to user

Returns
SNR

[array] The signal-to-noise ratio

get_snr_stationary(t_obs=None, instrument=None, custom_psd=None, L=None, approximate_R=None,
confusion_noise=None, re_interpolate_sc=True, which_sources=None,
verbose=False)

Computes the SNR assuming a stationary binary

Parameters

110 Chapter 4. LEGWORK modules and API reference

LEGWORK

t_obs
[array] Observation duration (default: follow sc_params)

instrument
[{{ ‘LISA’, ‘TianQin’, ‘custom’ }}] Instrument to observe with. If ‘custom’ then
custom_psd must be supplied.

custom_psd
[function] Custom function for computing the PSD. Must take the same arguments as
legwork.psd.lisa_psd() even if it ignores some.

L
[float] LISA arm length in metres

approximate_R
[boolean] Whether to approximate the response function (default: no)

confusion_noise
[various] Galactic confusion noise. Acceptable inputs are either one of the values listed in
legwork.psd.get_confusion_noise(), “auto” (automatically selects confusion noise
based on instrument - ‘robson19’ if LISA and ‘huang20’ if TianQin), or a custom function
that gives the confusion noise at each frequency for a given mission length where it would
be called by running noise(f, t_obs) and return a value with units of inverse Hertz

re_interpolate_sc
[boolean] Whether to re-interpolate the sensitivity curve if the observation time or instru-
ment changes. If False, warning will instead be given

which_sources
[bool/array] Mask on which sources to consider stationary and calculate (default is all
sources in Class)

verbose
[boolean] Whether to print additional information to user

Returns
SNR

[array] The signal-to-noise ratio

get_source_mask(circular=None, stationary=None, t_obs=None)
Produce a mask of the sources.

Create a mask based on whether binaries are circular or eccentric and stationary or evolving. Tolerance
levels are defined in the class.

Parameters
circular

[bool] None means either, True means only circular binaries and False means only ec-
centric

stationary
[bool] None means either, True means only stationary binaries and False means only
evolving

t_obs
[float] Observation time, default is value from self._sc_params

Returns
mask

[bool/array] Mask for the sources

4.4. legwork.source Module 111

LEGWORK

plot_source_variables(xstr, ystr=None, which_sources=None, exclude_merged_sources=True,
log_scale=False, **kwargs)

Plot distributions of Source variables. If two variables are specified then produce a 2D distribution, other-
wise a 1D distribution.

Parameters
xstr

[{ ‘m_1’, ‘m_2’, ‘m_c’, ‘ecc’, ‘dist’, ‘f_orb’, ‘f_GW’, ‘a’, ‘snr’ }] Which variable to plot on
the x axis

ystr
[{ ‘m_1’, ‘m_2’, ‘m_c’, ‘ecc’, ‘dist’, ‘f_orb’, ‘f_GW’, ‘a’, snr’ }] Which variable to plot on
the y axis (if None then a 1D distribution is made using xstr)

which_sources
[boolean array] Mask for which sources should be plotted (default is all sources)

exclude_merged_sources
[boolean] Whether to exclude merged sources in distributions (default is True)

log_scale
[bool or tuple of bools] Whether to use a log scale for the axes. For a 1D plot, only a bool
can be supplied and it applies to the x-axis. For a 2D plot, a single bool is applied to both
axes, a tuple is applied to the x- and y-axis respectively.

**kwargs
[various] When only xstr is provided, the kwargs are the same as legwork.
visualisation.plot_1D_dist(). When both xstr and ystr are provided, the kwargs
are the same as legwork.visualisation.plot_2D_dist(). Note that if xlabel or
ylabel is not passed then this function automatically creates one using a default string
and (if applicable) the Astropy units of the variable.

Returns
fig

[matplotlib Figure] The figure on which the distribution is plotted

ax
[matplotlib Axis] The axis on which the distribution is plotted

plot_sources_on_sc(snr_cutoff=0, fig=None, ax=None, show=True, label='Stationary sources',
sc_vis_settings={}, **kwargs)

Plot all sources in the class on the sensitivity curve

Parameters
snr_cutoff

[float] SNR below which sources will not be plotted (default is to plot all sources)

fig: `matplotlib Figure`
A figure on which to plot the distribution. Both ax and fig must be supplied for either to be
used

ax: `matplotlib Axis`
An axis on which to plot the distribution. Both ax and fig must be supplied for either to be
used

show
[boolean] Whether to immediately show the plot

112 Chapter 4. LEGWORK modules and API reference

LEGWORK

label
[str] Label to use for the plotted points

sc_vis_settings
[dict] Dictionary of parameters to pass to plot_sensitivity_curve(), e.g.
{“y_quantity”: “h_c”} will plot characteristic strain instead of ASD

**kwargs
[various] Keyword arguments to be passed to plotting functions

Returns
fig

[matplotlib Figure] The figure on which the sources are plotted

ax
[matplotlib Axis] The axis on which the sources are plotted

Notes

Warning: Note that this function is not yet implemented for evolving sources. Evolving sources will
not be plotted and a warning will be shown instead. We are working on implementing this soon!

set_g(interpolate_g)
Set Source g function if user wants to interpolate g(n,e). Otherwise just leave the function as None.

Parameters
interpolate_g

[boolean] Whether to interpolate the g(n,e) function from Peters (1964)

set_sc()

Set Source sensitivity curve function

If user wants to interpolate then perform interpolation of LISA sensitivity curve using sc_params. Other-
wise just leave the function as None.

update_gw_lum_tol(gw_lum_tol)
Update GW luminosity tolerance. Use the updated value to recalculate harmonics_required function and
transition to eccentric

Parameters
gw_lum_tol

[float] Allowed error on the GW luminosity when calculating SNRs

update_sc_params(sc_params)
Update sensitivity curve parameters

Update the parameters used to interpolate sensitivity curve and perform interpolation again to match new
params

4.4. legwork.source Module 113

LEGWORK

Stationary

class legwork.source.Stationary(m_1, m_2, ecc, dist, n_proc=1, f_orb=None, a=None, position=None,
polarisation=None, inclination=None, weights=None, gw_lum_tol=0.05,
stat_tol=0.01, interpolate_g=True, interpolate_sc=True, sc_params={})

Bases: Source

Subclass for sources that are stationary

Methods Summary

get_snr([t_obs, instrument, custom_psd, verbose]) Computes the SNR for a generic binary.

Methods Documentation

get_snr(t_obs=None, instrument=None, custom_psd=None, verbose=False)
Computes the SNR for a generic binary. Also records the harmonic with maximum SNR for each binary
in self.max_snr_harmonic.

Parameters
t_obs

[array] Observation duration (default: value from sc_params)

instrument
[{{ ‘LISA’, ‘TianQin’, ‘custom’ }}] Instrument to observe with. If ‘custom’ then
custom_psd must be supplied. (default: value from sc_params)

custom_psd
[function] Custom function for computing the PSD. Must take the same arguments as
legwork.psd.lisa_psd() even if it ignores some. (default: function from sc_params)

L
[float] LISA arm length in metres

approximate_R
[boolean] Whether to approximate the response function (default: no)

confusion_noise
[various] Galactic confusion noise. Acceptable inputs are either one of the values listed in
legwork.psd.get_confusion_noise(), “auto” (automatically selects confusion noise
based on instrument - ‘robson19’ if LISA and ‘huang20’ if TianQin), or a custom function
that gives the confusion noise at each frequency for a given mission length where it would
be called by running noise(f, t_obs) and return a value with units of inverse Hertz

n_step
[int] Number of time steps during observation duration

verbose
[boolean] Whether to print additional information to user

re_interpolate_sc
[boolean] Whether to re-interpolate the sensitivity curve if the observation time or instru-
ment changes. If False, warning will instead be given

114 Chapter 4. LEGWORK modules and API reference

LEGWORK

which_sources
[boolean/array] Mask of which sources to calculate the SNR for. If None then calculate
SNR for all sources.

Returns
SNR

[array] The signal-to-noise ratio

Evolving

class legwork.source.Evolving(m_1, m_2, ecc, dist, n_proc=1, f_orb=None, a=None, position=None,
polarisation=None, inclination=None, weights=None, gw_lum_tol=0.05,
stat_tol=0.01, interpolate_g=True, interpolate_sc=True, sc_params={})

Bases: Source

Subclass for sources that are evolving

Methods Summary

get_snr([t_obs, instrument, custom_psd, ...]) Computes the SNR for a generic binary.

Methods Documentation

get_snr(t_obs=None, instrument=None, custom_psd=None, n_step=100, verbose=False)
Computes the SNR for a generic binary. Also records the harmonic with maximum SNR for each binary
in self.max_snr_harmonic.

Parameters
t_obs

[array] Observation duration (default: value from sc_params)

instrument
[{{ ‘LISA’, ‘TianQin’, ‘custom’ }}] Instrument to observe with. If ‘custom’ then
custom_psd must be supplied. (default: value from sc_params)

custom_psd
[function] Custom function for computing the PSD. Must take the same arguments as
legwork.psd.lisa_psd() even if it ignores some. (default: function from sc_params)

L
[float] LISA arm length in metres

approximate_R
[boolean] Whether to approximate the response function (default: no)

confusion_noise
[various] Galactic confusion noise. Acceptable inputs are either one of the values listed in
legwork.psd.get_confusion_noise(), “auto” (automatically selects confusion noise
based on instrument - ‘robson19’ if LISA and ‘huang20’ if TianQin), or a custom function
that gives the confusion noise at each frequency for a given mission length where it would
be called by running noise(f, t_obs) and return a value with units of inverse Hertz

n_step
[int] Number of time steps during observation duration

4.4. legwork.source Module 115

LEGWORK

verbose
[boolean] Whether to print additional information to user

re_interpolate_sc
[boolean] Whether to re-interpolate the sensitivity curve if the observation time or instru-
ment changes. If False, warning will instead be given

which_sources
[boolean/array] Mask of which sources to calculate the SNR for. If None then calculate
SNR for all sources.

Returns
SNR

[array] The signal-to-noise ratio

VerificationBinaries

class legwork.source.VerificationBinaries

Bases: Source

Generate a Source class with the LISA verification binaries preloaded. Data for the binaries is gathered from
Kupfer+18 Table 1 and 2.

4.4.2 Class Inheritance Diagram

Evolving

Source Stationary

VerificationBinaries

Tip: Unable to find the source of your issues? Never fear! Check out our tutorial on using the Source class here!

116 Chapter 4. LEGWORK modules and API reference

LEGWORK

4.5 legwork.strain Module

Computes several types of gravitational wave strains

4.5.1 Functions

amplitude_modulation(position, polarisation, ...) Computes the modulation of the strain due to the orbit
averaged response of the detector to the position, polar-
isation, and inclination of the source using Cornish+03
Eq.42 and Babak+21.

h_0_n(m_c, f_orb, ecc, n, dist[, position, ...]) Computes strain amplitude
h_c_n(m_c, f_orb, ecc, n, dist[, position, ...]) Computes characteristic strain amplitude

amplitude_modulation

legwork.strain.amplitude_modulation(position, polarisation, inclination)
Computes the modulation of the strain due to the orbit averaged response of the detector to the position, polari-
sation, and inclination of the source using Cornish+03 Eq.42 and Babak+21.

Note that since the majority of the calculations in LEGWORK are carried out for the full position, polarisa-
tion, and inclination averages, we include a pre-factor of 5/4 on the amplitude modulation to undo the fac-
tor of 4/5 which arises from the averaging of legwork.utils.F_plus_squared() and legwork.utils.
F_cross_squared().

Additionally, note that this function does not include the factor of 1/2 from the Cornish+03 paper in order to re-
main in the frequency domain. More recent papers (e.g. Babak+21) define the strain as h(f)~A(f)*e^(2*i*psi(f))
and so the inner product is 1 instead of 1/2 as in Cornish+03.

Parameters
position

[SkyCoord/array, optional] Sky position of source. Must be specified using Astropy’s
astropy.coordinates.SkyCoord class.

polarisation
[float/array, optional] GW polarisation angle of the source. Must have astropy angular units.

inclination
[float/array, optional] Inclination of the source. Must have astropy angular units.

Returns
modulation

[float/array] modulation to apply to strain from detector response

4.5. legwork.strain Module 117

https://docs.astropy.org/en/stable/api/astropy.coordinates.SkyCoord.html#astropy.coordinates.SkyCoord

LEGWORK

h_0_n

legwork.strain.h_0_n(m_c, f_orb, ecc, n, dist, position=None, polarisation=None, inclination=None,
interpolated_g=None)

Computes strain amplitude

Computes the dimensionless power of a general binary radiating gravitational waves in the quadrupole approxi-
mation at n harmonics of the orbital frequency

In the docs below, x refers to the number of sources, y to the number of timesteps and z to the number of
harmonics.

Parameters
m_c

[float/array] Chirp mass of each binary. Shape should be (x,).

f_orb
[float/array] Orbital frequency of each binary at each timestep. Shape should be (x, y), or
(x,) if only one timestep.

ecc
[float/array] Eccentricity of each binary at each timestep. Shape should be (x, y), or (x,) if
only one timestep.

n
[int/array] Harmonic(s) at which to calculate the strain. Either a single int or shape should
be (z,)

dist
[float/array] Distance to each binary. Shape should be (x,)

position
[SkyCoord/array, optional] Sky position of source. Must be specified using Astropy’s
astropy.coordinates.SkyCoord class.

polarisation
[float/array, optional] GW polarisation angle of the source. Must have astropy angular units.

inclination
[float/array, optional] Inclination of the source. Must have astropy angular units.

interpolated_g
[function] A function returned by scipy.interpolate.interp2d that computes g(n,e)
from Peters (1964). The code assumes that the function returns the output sorted as with the
interp2d returned functions (and thus unsorts). Default is None and uses exact g(n,e) in this
case.

Returns
h_0

[float/array] Strain amplitude. Shape is (x, y, z).

118 Chapter 4. LEGWORK modules and API reference

https://docs.astropy.org/en/stable/api/astropy.coordinates.SkyCoord.html#astropy.coordinates.SkyCoord
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp2d.html#scipy.interpolate.interp2d

LEGWORK

h_c_n

legwork.strain.h_c_n(m_c, f_orb, ecc, n, dist, position=None, polarisation=None, inclination=None,
interpolated_g=None)

Computes characteristic strain amplitude

Computes the dimensionless characteristic power of a general binary radiating gravitational waves in the
quadrupole approximation at n harmonics of the orbital frequency

In the docs below, x refers to the number of sources, y to the number of timesteps and z to the number of
harmonics.

Parameters
m_c

[float/array] Chirp mass of each binary. Shape should be (x,).

f_orb
[float/array] Orbital frequency of each binary at each timestep. Shape should be (x, y), or
(x,) if only one timestep.

ecc
[float/array] Eccentricity of each binary at each timestep. Shape should be (x, y), or (x,) if
only one timestep.

n
[int/array] Harmonic(s) at which to calculate the strain. Either a single int or shape should
be (z,)

dist
[float/array] Distance to each binary. Shape should be (x,)

position
[SkyCoord/array, optional] Sky position of source. Must be specified using Astropy’s
astropy.coordinates.SkyCoord class.

polarisation
[float/array, optional] GW polarisation angle of the source. Must have astropy angular units.

inclination
[float/array, optional] Inclination of the source. Must have astropy angular units.

interpolated_g
[function] A function returned by scipy.interpolate.interp2d that computes g(n,e)
from Peters (1964). The code assumes that the function returns the output sorted as with the
interp2d returned functions (and thus unsorts). Default is None and uses exact g(n,e) in this
case.

Returns
h_c

[float/array] Characteristic strain. Shape is (x, y, z).

Tip: Feeling a little strained trying to parse these docs? Check out our tutorial on using functions in the strain
module here!

4.5. legwork.strain Module 119

https://docs.astropy.org/en/stable/api/astropy.coordinates.SkyCoord.html#astropy.coordinates.SkyCoord
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp2d.html#scipy.interpolate.interp2d

LEGWORK

4.6 legwork.utils Module

A collection of miscellaneous utility functions

4.6.1 Functions

chirp_mass(m_1, m_2) Computes chirp mass of binaries
peters_g(n, e) Compute g(n, e) from Peters and Mathews (1963) Eq.20
peters_f (e) f(e) from Peters and Mathews (1963) Eq.17
get_a_from_f_orb(f_orb, m_1, m_2) Converts orbital frequency to semi-major axis
get_f_orb_from_a(a, m_1, m_2) Converts semi-major axis to orbital frequency
get_a_from_ecc(ecc, c_0) Convert eccentricity to semi-major axis
beta(m_1, m_2) Compute beta defined in Peters and Mathews (1964)

Eq.5.9
c_0(a_i, ecc_i) Computes the c_0 factor in Peters and Mathews (1964)

Eq.5.11
fn_dot(m_c, f_orb, e, n) Rate of change of nth frequency of a binary
ensure_array(*args) Convert arguments to numpy arrays
D_plus_squared(theta, phi) Required for the detector responses <F_+^2>, <F_x^2>,

<F_+F_x>
D_cross_squared(theta, phi) Required for the detector responses <F_+^2>, <F_x^2>,

<F_+F_x>
D_plus_D_cross(theta, phi) Required for the detector responses <F_+^2>, <F_x^2>,

<F_+F_x>
F_plus_squared(theta, phi, psi) Compute the auto-correlated detector response for the

plus polarization
F_cross_squared(theta, phi, psi) Compute the auto-correlated detector response for the

cross polarization

chirp_mass

legwork.utils.chirp_mass(m_1, m_2)
Computes chirp mass of binaries

Parameters
m_1

[float/array] Primary mass

m_2
[float/array] Secondary mass

Returns
m_c

[float/array] Chirp mass

120 Chapter 4. LEGWORK modules and API reference

LEGWORK

peters_g

legwork.utils.peters_g(n, e)
Compute g(n, e) from Peters and Mathews (1963) Eq.20

This function gives the relative power of gravitational radiation at the nth harmonic

Parameters
n

[int/array] Harmonic(s) of interest

e
[float/array] Eccentricity

Returns
g

[array] g(n, e) from Peters and Mathews (1963) Eq. 20

peters_f

legwork.utils.peters_f(e)
f(e) from Peters and Mathews (1963) Eq.17

This function gives the integrated enhancement factor of gravitational radiation from an eccentric source com-
pared to an equivalent circular source.

Parameters
e

[float/array] Eccentricity

Returns
f

[float/array] Enhancement factor

Notes

Note that this function represents an infinite sum of g(n, e) - legwork.utils.peters_g()

get_a_from_f_orb

legwork.utils.get_a_from_f_orb(f_orb, m_1, m_2)
Converts orbital frequency to semi-major axis

Using Kepler’s third law, convert orbital frequency to semi-major axis. Inverse of legwork.utils.
get_f_orb_from_a().

Parameters
f_orb

[float/array] Orbital frequency

m_1
[float/array] Primary mass

4.6. legwork.utils Module 121

LEGWORK

m_2
[float/array] Secondary mass

Returns
a

[float/array] Semi-major axis

get_f_orb_from_a

legwork.utils.get_f_orb_from_a(a, m_1, m_2)
Converts semi-major axis to orbital frequency

Using Kepler’s third law, convert semi-major axis to orbital frequency. Inverse of legwork.utils.
get_a_from_f_orb().

Parameters
a

[float/array] Semi-major axis

m_1
[float/array] Primary mass

m_2
[float/array] Secondary mass

Returns
f_orb

[float/array] Orbital frequency

get_a_from_ecc

legwork.utils.get_a_from_ecc(ecc, c_0)
Convert eccentricity to semi-major axis

Use initial conditions and Peters (1964) Eq. 5.11 to convert ecc to a.

Parameters
ecc

[float/array] Eccentricity

c_0
[float] Constant defined in Peters and Mathews (1964) Eq. 5.11. See legwork.utils.
c_0()

Returns
a

[float/array] Semi-major axis

122 Chapter 4. LEGWORK modules and API reference

LEGWORK

beta

legwork.utils.beta(m_1, m_2)
Compute beta defined in Peters and Mathews (1964) Eq.5.9

Parameters
m_1

[float/array] Primary mass

m_2
[float/array] Secondary mass

Returns
beta

[float/array] Constant defined in Peters and Mathews (1964) Eq.5.9.

c_0

legwork.utils.c_0(a_i, ecc_i)
Computes the c_0 factor in Peters and Mathews (1964) Eq.5.11

Parameters
a_i

[float/array] Initial semi-major axis

ecc_i
[float/array] Initial eccentricity

Returns
c_0

[float] Constant defined in Peters and Mathews (1964) Eq.5.11

fn_dot

legwork.utils.fn_dot(m_c, f_orb, e, n)
Rate of change of nth frequency of a binary

Parameters
m_c

[float/array] Chirp mass

f_orb
[float/array] Orbital frequency

e
[float/array] Eccentricity

n
[int] Harmonic of interest

Returns
fn_dot

[float/array] Rate of change of nth frequency

4.6. legwork.utils Module 123

LEGWORK

ensure_array

legwork.utils.ensure_array(*args)
Convert arguments to numpy arrays

Convert arguments based on the following rules

• Ignore any None values

• Convert any lists to numpy arrays

• Wrap any other types in lists and convert to numpy arrays

Parameters
args

[any] Supply any number of arguments of any type

Returns
array_args

[any] Args converted to numpy arrays

any_not_arrays
[bool] Whether any arg is not a list or None or a numpy array

D_plus_squared

legwork.utils.D_plus_squared(theta, phi)
Required for the detector responses <F_+^2>, <F_x^2>, <F_+F_x>

Parameters
theta

[float/array] declination of the source

phi
[float/array] right ascension of the source

Returns
D_plus_2

[float/array] factor used for response; see eq. 44 of Cornish and Larson (2003)

D_cross_squared

legwork.utils.D_cross_squared(theta, phi)
Required for the detector responses <F_+^2>, <F_x^2>, <F_+F_x>

Parameters
theta

[float/array] declination of the source

phi
[float/array] right ascension of the source

Returns
D_cross_2

[float/array] factor used for response; see eq. 44 of Cornish and Larson (2003)

124 Chapter 4. LEGWORK modules and API reference

LEGWORK

D_plus_D_cross

legwork.utils.D_plus_D_cross(theta, phi)
Required for the detector responses <F_+^2>, <F_x^2>, <F_+F_x>

Parameters
theta

[float/array] declination of the source

phi
[float/array] right ascension of the source

Returns
D_plus_cross

[float/array] factor used for response; see eq. 44 of Cornish and Larson (2003)

F_plus_squared

legwork.utils.F_plus_squared(theta, phi, psi)
Compute the auto-correlated detector response for the plus polarization

Parameters
theta

[float/array] declination of the source

phi
[float/array] right ascension of the source

psi
[float/array] polarization of the source

Returns
F_plus_2

[float/array] Auto-correlated detector response for the plus polarization

F_cross_squared

legwork.utils.F_cross_squared(theta, phi, psi)
Compute the auto-correlated detector response for the cross polarization

Parameters
theta

[float/array] declination of the source

phi
[float/array] right ascension of the source

psi
[float/array] polarization of the source

Returns
F_cross_2

[float/array] Auto-correlated detector response for the cross polarization

4.6. legwork.utils Module 125

LEGWORK

4.7 legwork.visualisation Module

4.7.1 Functions

plot_1D_dist(x[, weights, disttype, ...]) Plot a 1D distribution of x.
plot_2D_dist(x, y[, weights, disttype, fig, ...]) Plot a 2D distribution of x and y
plot_sensitivity_curve([frequency_range, ...]) Plot the LISA sensitivity curve
plot_sources_on_sc(f_dom, snr[, weights, ...]) Overlay stationary sources on the LISA sensitivity

curve.

plot_1D_dist

legwork.visualisation.plot_1D_dist(x, weights=None, disttype='hist', log_scale=False, fig=None,
ax=None, show=True, figsize=(10, 7), xlabel=None, ylabel=None,
xlim=None, ylim=None, color=None, **kwargs)

Plot a 1D distribution of x.

This function is a wrapper for matplotlib.pyplot.hist(), seaborn.kdeplot() and seaborn.
ecdfplot().

Parameters
x

[float/int array] Variable to plot, should be a 1D array

weights
[float/int array] Weights for each variable in x, must have the same shape

disttype
[{{ “hist”, “kde”, “ecdf” }}] Which type of distribution plot to use

log_scale
[bool] Whether to plot log10(x) instead of x

fig: `matplotlib Figure`
A figure on which to plot the distribution. Both ax and fig must be supplied for either to be
used

ax: `matplotlib Axis`
An axis on which to plot the distribution. Both ax and fig must be supplied for either to be
used

show
[boolean] Whether to immediately show the plot or only return the Figure and Axis

figsize
[tuple] Tuple with size for the x- and y-axis if creating a new figure (i.e. ignored when fig/ax
is not None)

xlabel
[string] Label for the x axis, passed to Axes.set_xlabel()

ylabel
[string] Label for the y axis, passed to Axes.set_ylabel()

xlim
[tuple] Lower and upper limits for the x axis, passed to Axes.set_xlim()

126 Chapter 4. LEGWORK modules and API reference

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.hist.html#matplotlib.pyplot.hist
https://seaborn.pydata.org/generated/seaborn.kdeplot.html#seaborn.kdeplot
https://seaborn.pydata.org/generated/seaborn.ecdfplot.html#seaborn.ecdfplot
https://seaborn.pydata.org/generated/seaborn.ecdfplot.html#seaborn.ecdfplot

LEGWORK

ylim
[tuple] Lower and upper limits for the y axis, passed to Axes.set_ylim()

color
[string or tuple] Colour to use for the plot, see https://matplotlib.org/tutorials/colors/colors.
html for details on how to specify a colour

**kwargs
[(if disttype==”hist”)] Include values for any of bins, range, density, cumulative, bottom,
histtype, align, orientation, rwidth, log, label or more. See matplotlib.pyplot.hist()
for more details.

**kwargs
[(if disttype==”kde”)] Include values for any of gridsize, cut, clip, legend, cumulative,
bw_method, bw_adjust, log_scale, fill, label, linewidth, linestyle or more. See seaborn.
kdeplot() for more details.

**kwargs
[(if disttype==”ecdf”)] Include values for any of stat, complementary, log_scale, legend,
label, linewidth, linestyle or more. See seaborn.edcfplot() for more details.

Returns
fig

[matplotlib Figure] The figure on which the distribution is plotted

ax
[matplotlib Axis] The axis on which the distribution is plotted

plot_2D_dist

legwork.visualisation.plot_2D_dist(x, y, weights=None, disttype='scatter', fig=None, ax=None,
show=True, figsize=(12, 7), xlabel=None, ylabel=None, xlim=None,
ylim=None, log_scale=False, color=None, scatter_s=20, **kwargs)

Plot a 2D distribution of x and y

This function is a wrapper for matplotlib.pyplot.scatter() and seaborn.kdeplot().

Parameters
x

[float/int array] Variable to plot on the x axis, should be a 1D array

y
[float/int array] Variable to plot on the y axis, should be a 1D array

weights
[float/int array] Weights for each variable pair (x, y), must have the same shape

disttype
[{{ “scatter”, “kde” }}] Which type of distribution plot to use

fig: `matplotlib Figure`
A figure on which to plot the distribution. Both ax and fig must be supplied for either to be
used

ax: `matplotlib Axis`
An axis on which to plot the distribution. Both ax and fig must be supplied for either to be
used

4.7. legwork.visualisation Module 127

https://matplotlib.org/tutorials/colors/colors.html
https://matplotlib.org/tutorials/colors/colors.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.hist.html#matplotlib.pyplot.hist
https://seaborn.pydata.org/generated/seaborn.kdeplot.html#seaborn.kdeplot
https://seaborn.pydata.org/generated/seaborn.kdeplot.html#seaborn.kdeplot
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.scatter.html#matplotlib.pyplot.scatter
https://seaborn.pydata.org/generated/seaborn.kdeplot.html#seaborn.kdeplot

LEGWORK

show
[boolean] Whether to immediately show the plot or only return the Figure and Axis

figsize
[tuple] Tuple with size for the x- and y-axis if creating a new figure (i.e. ignored when fig/ax
is not None)

xlabel
[string] Label for the x axis, passed to Axes.set_xlabel()

ylabel
[string] Label for the y axis, passed to Axes.set_ylabel()

xlim
[tuple] Lower and upper limits for the x axis, passed to Axes.set_xlim()

ylim
[tuple] Lower and upper limits for the u axis, passed to Axes.set_ylim()

log_scale
[bool or tuple of bools] Whether to use a log scale for the axes. A single bool is applied to
both axes, a tuple is applied to the x- and y-axis respectively.

scatter_s
[float, default=20] Scatter point size, passed as s to a scatter plot and ignored for a KDE

color
[string or tuple] Colour to use for the plot, see https://matplotlib.org/tutorials/colors/colors.
html for details on how to specify a colour

**kwargs
[(if disttype==”scatter”)] Input any of s, c, marker, cmap, norm, vmin, vmax, alpha,
linewidths, edgecolors or more. See matplotlib.pyplot.scatter() for more details.

**kwargs
[(if disttype==”kde”)] Input any of gridsize, cut, clip, legend, cumulative, cbar, cbar_ax,
cbar_kws, bw_method, hue, palette, hue_order, hue_norm, levels, thresh, bw_adjust,
log_scale, fill, label. See seaborn.kdeplot() for more details.

Returns
fig

[matplotlib Figure] The figure on which the distribution is plotted

ax
[matplotlib Axis] The axis on which the distribution is plotted

plot_sensitivity_curve

legwork.visualisation.plot_sensitivity_curve(frequency_range=None, y_quantity='ASD', fig=None,
ax=None, show=True, figsize=(10, 7), color='#18068b',
fill=True, alpha=0.2, linewidth=1, label=None,
**kwargs)

Plot the LISA sensitivity curve

Parameters
frequency_range

[float array] Frequency values at which to plot the sensitivity curve

128 Chapter 4. LEGWORK modules and API reference

https://matplotlib.org/tutorials/colors/colors.html
https://matplotlib.org/tutorials/colors/colors.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.scatter.html#matplotlib.pyplot.scatter
https://seaborn.pydata.org/generated/seaborn.kdeplot.html#seaborn.kdeplot

LEGWORK

y_quantity
[{{ “ASD”, “h_c” }}] Which quantity to plot on the y axis (amplitude spectral density or
characteristic strain)

fig: `matplotlib Figure`
A figure on which to plot the distribution. Both ax and fig must be supplied for either to be
used

ax: `matplotlib Axis`
An axis on which to plot the distribution. Both ax and fig must be supplied for either to be
used

show
[boolean] Whether to immediately show the plot or only return the Figure and Axis

figsize
[tuple] Tuple with size for the x- and y-axis if creating a new figure (i.e. ignored when fig/ax
is not None)

color
[string or tuple] Colour to use for the curve, see https://matplotlib.org/tutorials/colors/colors.
html for details on how to specify a colour

fill
[boolean] Whether to fill the area below the sensitivity curve

alpha
[float] Opacity of the filled area below the sensitivity curve (ignored if fill is False)

linewidth
[float] Width of the sensitivity curve

label
[string] Label for the sensitivity curve in legends

**kwargs
[various] Keyword args are passed to legwork.psd.power_spectral_density(), see
those docs for details on possible arguments.

Returns
fig

[matplotlib Figure] The figure on which the distribution is plotted

ax
[matplotlib Axis] The axis on which the distribution is plotted

plot_sources_on_sc

legwork.visualisation.plot_sources_on_sc(f_dom, snr, weights=None, snr_cutoff=0, t_obs='auto',
instrument='LISA', custom_psd=None, L='auto',
approximate_R=False, confusion_noise='auto', fig=None,
ax=None, show=True, sc_vis_settings={}, **kwargs)

Overlay stationary sources on the LISA sensitivity curve.

Each source is plotted at its max snr harmonic frequency such that that its height above the curve is equal to it
signal-to-noise ratio. For circular sources this is frequency is simply twice the orbital frequency.

Parameters

4.7. legwork.visualisation Module 129

https://matplotlib.org/tutorials/colors/colors.html
https://matplotlib.org/tutorials/colors/colors.html

LEGWORK

f_dom
[float/array] Dominant harmonic frequency (f_orb * n_dom where n_dom is the
harmonic with the maximum snr). You may find the legwork.source.Source.
max_snr_harmonic() attribute useful (which gets populated) after legwork.source.
Source.get_snr().

snr
[float/array] Signal-to-noise ratio

weights
[float/array, optional, default=None] Statistical weights for each source, default is equal
weights

snr_cutoff
[float] SNR above which to plot binaries (default is 0 such that all sources are plotted)

instrument: {{ `LISA`, `TianQin`, `custom` }}
Instrument to use. LISA is used by default. Choosing custom uses custom_psd to compute
PSD.

custom_psd
[function] Custom function for computing the PSD. Must take the same arguments as
legwork.psd.lisa_psd() even if it ignores some.

t_obs
[float] Observation time (default auto)

L
[float] Arm length in metres

approximate_R
[boolean] Whether to approximate the response function (default: no)

confusion_noise
[various] Galactic confusion noise. Acceptable inputs are either one of the values listed in
legwork.psd.get_confusion_noise(), “auto” (automatically selects confusion noise
based on instrument - ‘robson19’ if LISA and ‘huang20’ if TianQin), or a custom function
that gives the confusion noise at each frequency for a given mission length where it would
be called by running noise(f, t_obs) and return a value with units of inverse Hertz

fig: `matplotlib Figure`
A figure on which to plot the distribution. Both ax and fig must be supplied for either to be
used

ax: `matplotlib Axis`
An axis on which to plot the distribution. Both ax and fig must be supplied for either to be
used

show
[boolean] Whether to immediately show the plot or only return the Figure and Axis

sc_vis_settings
[dict] Dictionary of parameters to pass to plot_sensitivity_curve(), e.g.
{“y_quantity”: “h_c”} will plot characteristic strain instead of ASD

**kwargs
[various] This function is a wrapper on legwork.visualisation.plot_2D_dist() and
each kwarg is passed directly to this function. For example, you can write disttype=”kde”
for a kde density plot instead of a scatter plot.

Returns

130 Chapter 4. LEGWORK modules and API reference

LEGWORK

fig
[matplotlib Figure] The figure on which the distribution is plotted

ax
[matplotlib Axis] The axis on which the distribution is plotted

Tip: Not quite sure how things are working vis-à-vis visualisation? Check out our tutorial on using functions in the
visualisation module here!

Note: This tutorial was generated from a Jupyter notebook that can be downloaded here. If you’d like to reproduce the
results in the notebook, or make changes to the code, we recommend downloading this notebook and running it with
Jupyter as certain cells (mostly those that change plot styles) are excluded from the tutorials.

4.7. legwork.visualisation Module 131

https://github.com/TeamLEGWORK/LEGWORK/tree/main/docs/notebooks/Derivations.ipynb

LEGWORK

132 Chapter 4. LEGWORK modules and API reference

CHAPTER

FIVE

DERIVATIONS AND EQUATION REFERENCE

This guide explains the origin and derivation of the equations used in LEGWORK functions. This follows closely Section
3 of the LEGWORK paper but with some extra steps shown!
At the end of this document (here) is a table that relates each of the functions in LEGWORK to an equation in this
document.

5.1 Conversions and Definitions (utils)

This section contains a miscellaneous collection of conversions and definitions that are useful in the later derivations.
First, the chirp mass of a binary is defined as

ℳ𝑐 =
(𝑚1𝑚2)3/5

(𝑚1 +𝑚2)1/5
, (5.1)

where 𝑚1 and 𝑚2 are the primary and secondary mass of the binary. This term often shows up in many equations and
hence is easier to measure in gravitational wave data analysis than the individual component masses.

Kepler’s third law allows one to convert between orbital frequency, 𝑓orb, and the semi-major axis, 𝑎, of a binary. For
convenience we show it here

𝑎 =

(︂
𝐺(𝑚1 +𝑚2)

(2𝜋𝑓orb)2

)︂1/3

, 𝑓orb =
1

2𝜋

√︂
𝐺(𝑚1 +𝑚2)

𝑎3
. (5.2)

As we deal with eccentric binaries, the different harmonic frequencies of gravitational wave emission become impor-
tant. We can write that the relative power radiated into the 𝑛th harmonic for a binary with eccentricity 𝑒 is [Peters-
Mathews63] (Eq. 20)

𝑔(𝑛, 𝑒) =
𝑛4

32

{︃[︂
𝐽𝑛−2(𝑛𝑒) − 2𝑒𝐽𝑛−1(𝑛𝑒) +

2

𝑛
𝐽𝑛(𝑛𝑒) + 2𝑒𝐽𝑛+1(𝑛𝑒) − 𝐽𝑛+2(𝑛𝑒)

]︂2
+
(︀
1 − 𝑒2

)︀
[𝐽𝑛−2(𝑛𝑒) − 2𝐽𝑛(𝑛𝑒) + 𝐽𝑛+2(𝑛𝑒)]

2
+

4

3𝑛2
[𝐽𝑛(𝑛𝑒)]

2

}︂
,

(5.3)

where 𝐽𝑛(𝑣) is the Bessel function of the first kind. Thus, the sum of 𝑔(𝑛, 𝑒) over all harmonics gives the factor by
which the gravitational wave emission is stronger for a binary of eccentricity 𝑒 over an otherwise identical circular
binary. This enhancement factor is defined by Peters as [PetersMathews63] (Eq. 17)

𝐹 (𝑒) =

∞∑︁
𝑛=1

𝑔(𝑛, 𝑒) =
1 + (73/24)𝑒2 + (37/96)𝑒4

(1 − 𝑒2)7/2
. (5.4)

Note that 𝐹 (0) = 1 as one would expect. A useful number to remember is that 𝐹 (0.5) ≈ 5.0, or in words, a binary
with eccentricity 0.5 loses energy to gravitational waves at a rate about 5 times higher than a similar circular binary.

133

https://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html

LEGWORK

5.2 Binary Evolution (evol)

5.2.1 Circular binaries

For a circular binary, the evolution can be calculated analytically as the rate at which the binary shrinks can be readily
integrated [Peters64] (Eq. 5.6)

d𝑎

d𝑡 𝑒=0
= − 𝛽

𝑎3
, (5.5)

where 𝛽 is

𝛽(𝑚1,𝑚2) =
64

5

𝐺3

𝑐5
𝑚1𝑚2(𝑚1 +𝑚2). (5.6)

Integratig this gives the semi-major axis of a circular binary as a function of time as [Peters64] (Eq. 5.9)

𝑎(𝑡,𝑚1,𝑚2) = [𝑎40 − 4𝑡𝛽(𝑚1,𝑚2)]1/4, (5.7)

where 𝑎0 is the initial semi-major axis. Moreover, we can set the final semi-major axis in Eq. (5.7) equal to zero and
solve for the inspiral time ([Peters64] Eq. 5.10)

𝑡merge,circ =
𝑎40
4𝛽

(5.8)

5.2.2 Eccentric binaries

Eccentric binaries are more complicated because the semi-major axis and eccentricity both evolve simultaneously and
depend on one another. These equations cannot be solved analytically and require numerical integration. Firstly, we
can relate 𝑎 and 𝑒 with [Peters64] (Eq. 5.11)

𝑎(𝑒) = 𝑐0
𝑒12/19

(1 − 𝑒2)

(︂
1 +

121

304
𝑒2
)︂870/2299

, (5.9)

where 𝑐0 is

𝑐0(𝑎0, 𝑒0) = 𝑎0
(1 − 𝑒20)

𝑒
12/19
0

(︂
1 +

121

304
𝑒20

)︂−870/2299

(5.10)

where 𝑎0 and 𝑒0 are the initial semi-major axis and eccentricity respectively.

where 𝑐0 is defined in Eq. (5.10) – such that the initial conditions are satisfied. Then we can numerically integrate
[Peters64] (Eq. 5.13)

d𝑒

d𝑡
= −19

12

𝛽

𝑐40

𝑒−29/19
(︀
1 − 𝑒2

)︀3/2
[1 + (121/304)𝑒2]

1181/2299
, (5.11)

to find 𝑒(𝑡) and use this in conjunction with Eq. (5.9) to solve for 𝑎(𝑡), which can in turn be converted to 𝑓orb(𝑡).

Furthermore, we can invert this to find the inspiral time by using that 𝑒 → 0 when the binary merges which gives
[Peters64] (Eq. 5.14)

𝑡merge =
12

19

𝑐40
𝛽

∫︁ 𝑒0

0

[︀
1 + (121/304)𝑒2

]︀1181/2299
𝑒−29/19 (1 − 𝑒2)

3/2
d𝑒 (5.12)

For very small or very large eccentricities we can approximate this integral using the following expressions (given in
unlabelled equations after [Peters64] Eq. 5.14)

𝑡merge, e2≪1 =
𝑐40
4𝛽

· 𝑒48/190 (5.13)

𝑡merge, (1−e2)≪1 =
768

425

𝑎40
4𝛽

(1 − 𝑒20)7/2 (5.14)

134 Chapter 5. Derivations and Equation Reference

LEGWORK

The standard threshold employed by LEGWORK for small eccentricities is e = 0.15 and for large eccentricities is e =
0.9999 (as this approximates 𝑡merge with an error below roughly 2%), though we note that this can be customised by
the user if desired.

In addition, we implement the fit to Eq. 13 from Mandel (2021) that approximates the merger time as

𝑡merge ≈ 𝑡merge,circ(1 − 𝑒20)7/2(1 + 0.27𝑒100 + 0.33𝑒200 + 0.2𝑒10000) (5.15)

which gives 𝑡merge with an error below 3% for eccentricities below 0.9999. We additionally add a rudimentary poly-
nomial fit to further reduce this error to below 0.5%. The user may specify whether to use this fit or perform the full
integral when calculating merger times in LEGWORK.

5.3 Gravitational Wave Strains (strain)

5.3.1 Characteristic Strain

The strength of a gravitational wave in a detector at any one moment is determined by the strain amplitude, ℎ0. However,
for stellar-origin sources at mHz frequencies, the signal can be present in the detector for many years. This means that,
the 𝑛th harmonic of the binary will spend approximately 𝑓𝑛/𝑓𝑛 seconds (or 𝑓2𝑛/𝑓𝑛 cycles) in the vicinity of a frequency
𝑓𝑛 [FinnThorne00]. This leads to the signal ‘accumulating’ at the frequency 𝑓𝑛.

Therefore, to account for the integration of the signal over the mission, we instead use the ‘characteristic’ strain am-
plitude of the 𝑛th harmonic, ℎ𝑐,𝑛, which is the term present in the general signal-to-noise ratio equation. This can be
related the to the strain amplitude in the 𝑛th harmonic, ℎ0,𝑛, as (e.g. [FinnThorne00] [MooreColeBerry15])

ℎ2𝑐,𝑛 =

(︂
𝑓2𝑛

𝑓𝑛

)︂
ℎ2𝑛. (5.16)

Note: Note that this is factor of 2 different from [FinnThorne00]. This is because the factor of 2 is already included
in the [RobsonCornishLiu19] sensitivity curve and so we remove it here.

The characteristic strain represents the strain measured by the detector over the duration of the mission (approximated
as a single broad-band burst), whilst the strain amplitude is the strength of the GW emission at each instantaneous
moment. For a stellar mass binary, the characteristic strain in the 𝑛th harmonic is given by (e.g. [BarackCutler04] Eq.
56; [FlanaganHughes98] Eq. 5.1)

ℎ2𝑐,𝑛 =
1

(𝜋𝐷𝐿)2

(︃
2𝐺

𝑐3
𝐸𝑛

𝑓𝑛

)︃
, (5.17)

where 𝐷𝐿 is the luminosity distance to the binary, 𝐸̇𝑛 is the power radiated in the 𝑛th harmonic and 𝑓𝑛 is the rate of
change of the 𝑛th harmonic frequency. The power radiated in the 𝑛th harmonic is given by [PetersMathews63] (Eq.
19)

𝐸̇𝑛 =
32

5

𝐺4

𝑐5
𝑚2

1𝑚
2
2 (𝑚1 +𝑚2)

𝑎5
𝑔(𝑛, 𝑒), (5.18)

where𝑚1 is the primary mass,𝑚2 is the secondary mass, 𝑎 is the semi-major axis of the binary and 𝑒 is the eccentricity.
Using Eq. (5.1) and Eq. (5.2), we can recast Eq. (5.18) in a form more applicable for gravitational wave detections
that is a function of only the chirp mass, orbital frequency and eccentricity.

𝐸̇𝑛 =
32

5

𝐺4

𝑐5
(︀
𝑚2

1𝑚
2
2 (𝑚1 +𝑚2)

)︀
𝑔(𝑛, 𝑒) ·

(︂
(2𝜋𝑓orb)2

𝐺(𝑚1 +𝑚2)

)︂5/3

(5.19)

𝐸̇𝑛 =
32

5

𝐺7/3

𝑐5
𝑚2

1𝑚
2
2

(𝑚1 +𝑚2)
2/3

(2𝜋𝑓orb)10/3𝑔(𝑛, 𝑒) (5.20)

𝐸̇𝑛(ℳ𝑐, 𝑓orb, 𝑒) =
32

5

𝐺7/3

𝑐5
(2𝜋𝑓orbℳ𝑐)

10/3
𝑔(𝑛, 𝑒) (5.21)

5.3. Gravitational Wave Strains (strain) 135

LEGWORK

The last term needed to define the characteristic strain in Eq. (5.17) is the rate of change of the 𝑛th harmonic frequency.
We can first apply the chain rule and note that

𝑓𝑛 =
d𝑓𝑛
d𝑎

d𝑎

d𝑡
. (5.22)

The frequency of the 𝑛th harmonic is simply defined as 𝑓𝑛 = 𝑛 · 𝑓orb and therefore we can find an expression for
d𝑓𝑛/d𝑎 by rearranging and differentiating Eq. (5.2)

𝑓𝑛 =
𝑛

2𝜋

√︂
𝐺(𝑚1 +𝑚2)

𝑎3
, (5.23)

d𝑓𝑛
d𝑎

= −3𝑛

4𝜋

√︀
𝐺(𝑚1 +𝑚2)

𝑎5/2
. (5.24)

The rate at which the semi-major axis decreases is [Peters64] (Eq. 5.6)

d𝑎

d𝑡
= −64

5

𝐺3𝑚1𝑚2 (𝑚1 +𝑚2)

𝑐5𝑎3
𝐹 (𝑒). (5.25)

Substituting Eq. (5.24) and Eq. (5.25) into Eq. (5.22) gives an expression for 𝑓𝑛

𝑓𝑛 = −3𝑛

4𝜋

√︀
𝐺(𝑚1 +𝑚2)

𝑎5/2
· −64

5

𝐺3𝑚1𝑚2 (𝑚1 +𝑚2)

𝑐5𝑎3
𝐹 (𝑒), (5.26)

𝑓𝑛 =
48𝑛

5𝜋

𝐺7/2

𝑐5

(︁
𝑚1𝑚2(𝑚1 +𝑚2)3/2

)︁ 𝐹 (𝑒)

𝑎11/2
, (5.27)

which, as above with 𝐸̇𝑛, we can recast using Kepler’s third law and the definition of the chirp mass

𝑓𝑛 =
48𝑛

5𝜋

𝐺7/2

𝑐5

(︁
𝑚1𝑚2(𝑚1 +𝑚2)3/2

)︁
𝐹 (𝑒) ·

(︂
(2𝜋𝑓orb)2

𝐺(𝑚1 +𝑚2)

)︂11/6

, (5.28)

=
48𝑛

5𝜋

𝐺5/3

𝑐5
𝑚1𝑚2

(𝑚1 +𝑚2)1/3
· (2𝜋𝑓orb)11/3 · 𝐹 (𝑒), (5.29)

𝑓𝑛(ℳ𝑐, 𝑓orb, 𝑒) =
48𝑛

5𝜋

(𝐺ℳ𝑐)
5/3

𝑐5
(2𝜋𝑓orb)11/3𝐹 (𝑒) (5.30)

With definitions of both 𝐸̇𝑛 and 𝑓𝑛, we are now in a position to find an expression for the characteristic strain by
plugging Eq. (5.21) and Eq. (5.30) into Eq. (5.33):

ℎ2𝑐,𝑛 =
1

(𝜋𝐷𝐿)2

(︃
2𝐺

𝑐3

32
5
𝐺7/3

𝑐5 (2𝜋𝑓orbℳ𝑐)
10/3

𝑔(𝑛, 𝑒)

48𝑛
5𝜋

(𝐺ℳ𝑐)
5/3

𝑐5 (2𝜋𝑓orb)11/3𝐹 (𝑒)

)︃
(5.31)

=
1

(𝜋𝐷𝐿)2

(︃
25/3𝜋2/3

3

(𝐺ℳ𝑐)
5/3

𝑐3
1

𝑓
1/3
orb

𝑔(𝑛, 𝑒)

𝑛𝐹 (𝑒)

)︃
(5.32)

This gives a final simplified expression for the characteristic strain amplitude of a GW source.

ℎ2𝑐,𝑛(ℳ𝑐, 𝐷𝐿, 𝑓orb, 𝑒) =
25/3

3𝜋4/3

(𝐺ℳ𝑐)
5/3

𝑐3𝐷2
𝐿

1

𝑓
1/3
orb

𝑔(𝑛, 𝑒)

𝑛𝐹 (𝑒)
(5.33)

Using the conversion between characteristic strain and regular strain, in addition to Eq. (5.30) and Eq. (5.33), we can
write an expression for the strain amplitude of gravitational waves in the 𝑛th harmonic

ℎ2𝑛 =

(︃
𝑓𝑛
𝑓2𝑛

)︃
ℎ2𝑐,𝑛, (5.34)

ℎ2𝑛 =

(︃
48𝑛

5𝜋

(𝐺ℳ𝑐)
5/3

𝑐5
𝐹 (𝑒) · (2𝜋𝑓orb)11/3

𝑛2𝑓2orb

)︃(︃
25/3

3𝜋4/3

(𝐺ℳ𝑐)
5/3

𝑐3𝐷2
𝐿

1

𝑛𝑓
1/3
orb

𝑔(𝑛, 𝑒)

𝐹 (𝑒)

)︃
, (5.35)

This gives a final simplified expression for the strain amplitude of a GW source.

ℎ2𝑛(ℳ𝑐, 𝑓orb, 𝐷𝐿, 𝑒) =
228/3

5

(𝐺ℳ𝑐)
10/3

𝑐8𝐷2
𝐿

𝑔(𝑛, 𝑒)

𝑛2
(𝜋𝑓orb)

4/3 (5.36)

136 Chapter 5. Derivations and Equation Reference

LEGWORK

5.3.2 Amplitude modulation for orbit averaged sources

Because the LISA detectors are not stationary and instead follow an Earth-trailing orbit, the antenna pattern of LISA
is not isotropically distributed or stationary. For sources that have a known position, inclination, and polarisation, we
can consider the amplitude modulation of the strain due to the average motion of LISA’s orbit. We follow the results
of [CornishLarson03] to define the amplitude modulation. However, we follow the conventions of more recent papers
(e.g. [BabakHewitsonPetiteau21], Eq.67) to write the amplitude modulation as

𝐴2
mod =

1

4

(︀
1 + cos2 𝜄

)︀2 ⟨︀
𝐹 2
+

⟩︀
+ cos2 𝜄

⟨︀
𝐹 2
×
⟩︀
, (5.37)

where
⟨︀
𝐹 2
+

⟩︀
and

⟨︀
𝐹 2
×
⟩︀
, the orbit-averaged detector responses, are defined as⟨︀

𝐹 2
+

⟩︀
=

1

4

(︀
cos2 2𝜓

⟨︀
𝐷2

+

⟩︀
− sin 4𝜓 ⟨𝐷+𝐷×⟩ + sin2 2𝜓

⟨︀
𝐷2

×
⟩︀)︀
, (5.38)

⟨︀
𝐹 2
×
⟩︀

=
1

4

(︀
cos2 2𝜓

⟨︀
𝐷2

×
⟩︀

+ sin 4𝜓 ⟨𝐷+𝐷×⟩ + sin2 2𝜓
⟨︀
𝐷2

+

⟩︀)︀
, (5.39)

and
⟨𝐷+𝐷×⟩ =

243

512
cos 𝜃 sin 2𝜑

(︀
2 cos2 𝜑− 1

)︀ (︀
1 + cos2 𝜃

)︀
, (5.40)⟨︀

𝐷2
×
⟩︀

=
3

512

(︀
120 sin2 𝜃 + cos2 𝜃 + 162 sin2 2𝜑 cos2 𝜃

)︀
, (5.41)⟨︀

𝐷2
+

⟩︀
=

3

2048

[︀
487 + 158 cos2 𝜃 + 7 cos4 𝜃 − 162 sin2 2𝜑

(︀
1 + cos2 𝜃

)︀2]︀
. (5.42)

In the equations above, the inclination is given by 𝜄, the right ascension and declination are given by 𝜑 and 𝜃 respsec-
tively, and the polarisation is given by 𝜓.

The orbital motion of LISA smears the source frequency by roughly 10−4 mHz due to the antenna pattern changing as
the detector orbits, the Doppler shift from the motion, and the phase modulation from the + and × polarisations in the
antenna pattern. Generally, the modulation reduces the strain amplitude because the smearing in frequency reduces the
amount of signal build up at the true source frequency.

We note that since the orbit averaging is carried out in Fourier space, this requires the frequency to be monochromatic
and thus is only implemented in LEGWORK for quasi-circular binaries. We also note that since the majority of the
calculations in LEGWORK are carried out for the full position, polarisation, and inclination averages, we place a pre-
factor of 5/4 on the amplitude modulation in the software implementation to undo the factor of 4/5 which arises from
the averaging of Equations (5.38) and (5.39).

5.4 Sensitivity Curves (psd)

5.4.1 LISA

For the LISA sensitivity curve, we follow the equations from [RobsonCornishLiu19], which we list here for your
convenience.

The effective LISA noise power spectral density is defined as ([RobsonCornishLiu19] Eq. 2)

𝑆n(𝑓) =
𝑃𝑛(𝑓)

ℛ(𝑓)
+ 𝑆𝑐(𝑓), (5.43)

where 𝑃n(𝑓) is the power spectral density of the detector noise and ℛ(𝑓) is the sky and polarisation averaged signal
response function of the instrument. Alternatively if we expand out 𝑃𝑛(𝑓), approximate ℛ(𝑓) and simplify we find
([RobsonCornishLiu19] Eq. 1)

𝑆n(𝑓) =
10

3𝐿2

(︂
𝑃OMS(𝑓) + 2

(︂
1 + cos2

(︂
𝑓

𝑓*

)︂)︂
𝑃acc(𝑓)

(2𝜋𝑓)4

)︂(︃
1 +

6

10

(︂
𝑓

𝑓*

)︂2
)︃

+ 𝑆𝑐(𝑓) (5.44)

5.4. Sensitivity Curves (psd) 137

LEGWORK

where 𝐿 = 2.5 Gm is detector arm length, 𝑓* = 19.09 mHz is the response frequency,

𝑃OMS(𝑓) =
(︀
1.5 × 10−11m

)︀2(︃
1 +

(︂
2mHz

𝑓

)︂4
)︃

Hz−1 (5.45)

is the single-link optical metrology noise ([RobsonCornishLiu19] Eq. 10),

𝑃acc(𝑓) =
(︀
3 × 10−15ms−2

)︀2(︃
1 +

(︂
0.4mHz

𝑓

)︂2
)︃(︃

1 +

(︂
𝑓

8mHz

)︂4
)︃

Hz−1 (5.46)

is the single test mass acceleration noise ([RobsonCornishLiu19] Eq. 11) and

𝑆𝑐(𝑓) = 𝐴𝑓−7/3𝑒−𝑓
𝛼+𝛽𝑓 sin(𝜅𝑓) [1 + tanh (𝛾 (𝑓𝑘 − 𝑓))] Hz−1 (5.47)

is the galactic confusion noise ([RobsonCornishLiu19] Eq. 14), where the amplitude 𝐴 is fixed as 9 × 10−45 and the
various parameters change over time:

parameter 6 months 1 year 2 years 4 years
𝛼 0.133 0.171 0.165 0.138
𝛽 243 292 299 -221
𝜅 482 1020 611 521
𝛾 917 1680 1340 1680
𝑓𝑘 0.00258 0.00215 0.00173 0.00113

5.4.2 TianQin

We additionally allow other instruments than LISA. We have the TianQin sensitivity curve built in where we use the
power spectral density given in [HuangHuKorol+20] Eq. 13.

𝑆𝑁 (𝑓) =
10

3𝐿2

[︂
4𝑆𝑎

(2𝜋𝑓)4

(︂
1 +

10−4𝐻𝑧

𝑓

)︂
+ 𝑆𝑥

]︂
×

[︃
1 + 0.6

(︂
𝑓

𝑓*

)︂2
]︃ (5.48)

where 𝐿 =
√

3× 105 km} is the arm length, 𝑆𝑎 = 1× 10−30 m2 s−4 Hz−1 is the acceleration noise, 𝑆𝑥 = 1× 10−24

m2 Hz−1 is the displacement measurement noise and 𝑓* = 𝑐/2𝜋𝐿 is the transfer frequency. Note that Eq. 5.48
includes an extra factor of 10/3 compared to Eq.13 of [HuangHuKorol+20]. [HuangHuKorol+20] absorb this factor
into the waveform rather than include it in the power spectral density. We include it to match the convention used by
[RobsonCornishLiu19] for the LISA sensitivity curve (see the factor of 10/3 in Eq. 5.44) so that the sensitivity curves
can be compared fairly.

5.5 Signal-to-Noise Ratios for a 6-link (3-arm) LISA (snr)

Please note that this section draws heavily from [FlanaganHughes98] Section II C. We go through the same derivations
here in more detail than in a paper and hopefully help clarify all of the different stages.

138 Chapter 5. Derivations and Equation Reference

LEGWORK

5.5.1 Defining the general SNR

In order to calculate the signal to noise ratio for a given source of gravitational waves (GWs) in the LISA detector, we
need to consider the following parameters:

• position of the source on the sky: (𝜃, 𝜑)

• direction from the source to the detector: (𝜄, 𝛽)

• orientation of the source, which fixes the polarisation of the GW: 𝜓

• the distance from the source to the detector: 𝐷𝐿

Then, assuming a matched filter analysis of the GW signal 𝑠(𝑡) + 𝑛(𝑡) (where 𝑠(𝑡) is the signal and 𝑛(𝑡) is the noise),
which relies on knowing the shape of the signal, the signal to noise ratio, 𝜌, is given in the frequency domain as

𝜌2(𝐷𝐿, 𝜃, 𝜑, 𝜓, 𝜄, 𝛽) =
⟨𝑠(𝑡)⋆𝑠(𝑡)⟩
⟨𝑛(𝑡)⋆𝑛(𝑡)⟩

= 2

∫︁ +∞

−∞

|𝑠(𝑓)|2

𝑃n(𝑓)
𝑑𝑓 = 4

∫︁ ∞

0

|𝑠(𝑓)|2

𝑃n(𝑓)
𝑑𝑓, (5.49)

where 𝑠(𝑓) is the Fourier transform of the signal, 𝑠(𝑡), and 𝑃n(𝑓) is the one sided power spectral density of the noise
defined as as ⟨𝑛(𝑡)⋆𝑛(𝑡)⟩ =

∫︀∞
0

1
2𝑃n(𝑓)𝑑𝑓 (c.f. [RobsonCornishLiu19] Eq. 2). Here, 𝑠(𝑓) is implicitly also dependent

on 𝐷𝐿, 𝜃, 𝜑, 𝜓, 𝜄, and 𝛽 as

|𝑠(𝑓)|2 = |𝐹+(𝜃, 𝜑, 𝜓)ℎ̃+(𝑡,𝐷𝐿, 𝜄, 𝛽) + 𝐹×(𝜃, 𝜑, 𝜓)ℎ̃×(𝑡,𝐷𝐿, 𝜄, 𝛽)|2, (5.50)

where 𝐹+,× are the ‘plus’ and ‘cross’ antenna patterns of the LISA detector to the ‘plus’ and ‘cross’ strains, ℎ+,×. Note
throughout any parameters discussed with the subscript 𝑥+,× refers to both 𝑥+ and 𝑥×.

In LISA’s case, when averaged over all angles and polarisations, the antenna patterns are orthogonal thus ⟨𝐹+𝐹×⟩ = 0.
This means we can rewrite Eq. 5.50 as

|𝑠(𝑓)|2 = |𝐹+(𝜃, 𝜑, 𝜓)ℎ̃+(𝑡,𝐷𝐿, 𝜄, 𝛽)|2 + |𝐹×(𝜃, 𝜑, 𝜓)ℎ̃×(𝑡,𝐷𝐿, 𝜄, 𝛽)|2, (5.51)

which can then be applied to Eq. (5.49) as

𝜌2(𝐷𝐿, 𝜃, 𝜑, 𝜓, 𝜄, 𝛽) = 4

∫︁ ∞

0

|𝐹+ℎ̃+|2 + |𝐹×ℎ̃×|2

𝑃n(𝑓)
𝑑𝑓. (5.52)

5.5.2 Average over position and polarisation

Now, we can consider averaging over different quantities. In particular, we can average over the sky position and
polarisation as

⟨𝜌⟩2𝜃,𝜑,𝜓 = 4

∫︁ ∞

0

𝑑𝑓

∫︁
𝑑Ω𝜃,𝜑

4𝜋

∫︁
𝑑𝜓

𝜋

|𝐹+(𝜃, 𝜑, 𝜓) ℎ̃+(𝜄, 𝛽)|2 + |𝐹×(𝜃, 𝜑, 𝜓) ℎ̃×(𝜄, 𝛽)|2

𝑃n(𝑓)
. (5.53)

From [RobsonCornishLiu19], we can write the position and polarisation average of the signal response function of the
instrument, ℛ, as

ℛ = ⟨𝐹+𝐹
⋆
+⟩ = ⟨𝐹×𝐹

⋆
×⟩, where ⟨F+,×F⋆+,×⟩ =

∫︁
dΩ𝜃,𝜑

4𝜋

∫︁
d𝜓

𝜋
|F+,×|2. (5.54)

Then combining Eq. (5.53) and Eq. (5.54), we then find

⟨𝜌⟩2𝜃,𝜑,𝜓 = 4

∫︁ ∞

0

𝑑𝑓ℛ(𝑓)

(︃
|ℎ̃+|2 + |ℎ̃×|2

𝑃n(𝑓)

)︃
(5.55)

Note that this is written in [FlanaganHughes98] for the LIGO response function which is ℛ = ⟨𝐹+,×⟩2 = 1/5.

5.5. Signal-to-Noise Ratios for a 6-link (3-arm) LISA (snr) 139

LEGWORK

5.5.3 Average over orientation

Now, we can average over the orientation of the source: (𝜄, 𝛽), noting that the averaging is independent of the distance
𝐷𝐿. Then we can rewrite |ℎ̃+|2 + |ℎ̃×|2 in terms of two functions |𝐻̃+|2 and |𝐻̃×|2, where ℎ̃+,× = 𝐻̃+,×/𝐷𝐿. Then,
averaging over the source direction gives

⟨𝜌⟩2(𝜃,𝜑,𝜓),(𝜄,𝛽) =
4

𝐷2
𝐿

∫︁ ∞

0

𝑑𝑓ℛ(𝑓)

∫︁
𝑑Ω𝜄,𝛽

4𝜋

|𝐻̃+|2 + |𝐻̃×|2

𝑃n(𝑓)
, (5.56)

where we would like to express 𝐻̃+,×(𝑓)2 in terms of the energy spectrum of the GW. To do this, we note that the local
energy flux of GWs at the detector is given by (e.g. [PressThorne72] Eq. 6)

𝑑𝐸

𝑑𝐴𝑑𝑡
=

1

16𝜋

𝑐3

𝐺

[︃(︂
𝑑ℎ+
𝑑𝑡

)︂2

+

(︂
𝑑ℎ×
𝑑𝑡

)︂2
]︃
, (5.57)

where the bar indicates an average over several cycles of the wave which is appropriate for LISA sources. We can
transform Eq. (5.57) using Parseval’s theorem, where we can write

∫︁ +∞

−∞
𝑑𝑡

∫︁
𝑑𝐴

𝑑𝐸

𝑑𝐴𝑑𝑡
=

∫︁ +∞

−∞
𝑑𝑡

∫︁
𝑑𝐴

1

16𝜋

𝑐3

𝐺

[︃(︂
𝑑ℎ+
𝑑𝑡

)︂2

+

(︂
𝑑ℎ×
𝑑𝑡

)︂2
]︃

(5.58)

=

∫︁ +∞

−∞
𝑑𝑓

∫︁
𝑑𝐴

1

16𝜋

𝑐3

𝐺

[︁(︀
(−2𝜋𝑖𝑓)|ℎ̃+|

)︀2
+
(︀
(−2𝜋𝑖𝑓)|ℎ̃×|

)︀2]︁ (5.59)

=

∫︁ +∞

−∞
𝑑𝑓

∫︁
𝑑𝐴

1

16𝜋

𝑐3

𝐺
(2𝜋𝑓)2

(︁
|ℎ̃+|2 + |ℎ̃×|2

)︁
(5.60)

=

∫︁ +∞

−∞
𝑑𝑓

∫︁
𝑑𝐴

𝑐3

𝐺

𝜋𝑓2

4

(︁
|ℎ̃+|2 + |ℎ̃×|2

)︁
(5.61)

=

∫︁ ∞

0

𝑑𝑓

∫︁
𝑑𝐴

𝑐3

𝐺

𝜋𝑓2

2

(︁
|ℎ̃+|2 + |ℎ̃×|2

)︁
. (5.62)

Note that we perform a Fourier transform of the square of the time derivatives in the second line. Now, since𝐴 = 𝐷2
𝐿Ω

and |ℎ̃+,×|2 = |𝐻̃+,×|2/𝐷2
𝐿, we know

|ℎ̃+,×|2𝑑𝐴 = |𝐻̃+,×|2𝑑Ω𝜄,𝛽 , (5.63)

then we can write Eq. (5.62) in terms of |𝐻+,×|2 as∫︁ +∞

−∞
𝑑𝑡

∫︁
𝑑𝐴

𝑑𝐸

𝑑𝐴𝑑𝑡
=

∫︁ ∞

0

𝑑𝑓

∫︁
𝑑𝐴

𝑐3

𝐺

𝜋𝑓2

2

(︁
|ℎ̃+|2 + |ℎ̃×|2

)︁
(5.64)

=

∫︁ ∞

0

𝑑𝑓
𝜋𝑓2

2

𝑐3

𝐺

∫︁
𝑑Ω
(︁
|𝐻̃+|2 + |𝐻̃×|2

)︁
. (5.65)

We can note that by using Eq. (5.63) and performing a Fourier transform we also have that∫︁ +∞

−∞
𝑑𝑡

∫︁
𝑑𝐴

𝑑𝐸

𝑑𝐴𝑑𝑡
=

∫︁ ∞

0

𝑑𝑓

∫︁
𝑑Ω

𝑑𝐸

𝑑Ω𝑑𝑓
. (5.66)

From inspection of Eq. (5.65) and Eq. (5.66), we can write the spectral energy flux as∫︁
𝑑Ω

𝑑𝐸

𝑑Ω𝑑𝑓
=
𝜋𝑓2

2

𝑐3

𝐺

∫︁
𝑑Ω
(︁
|𝐻̃+|2 + |𝐻̃×|2

)︁
. (5.67)

140 Chapter 5. Derivations and Equation Reference

LEGWORK

5.5.4 Fully averaged SNR equation

We are now in a position to write an expression for the fully averaged SNR. Let’s take Eq. (5.67) and apply it to Eq.
(5.56)

⟨𝜌⟩2(𝜃,𝜑,𝜓),(𝜄,𝛽) =
4

𝐷2
𝐿

𝐺

𝑐3

∫︁ ∞

0

𝑑𝑓
1

𝑃n(𝑓)/ℛ(𝑓)

∫︁
𝑑Ω

4𝜋

𝑑𝐸

𝑑Ω𝑑𝑓

2

𝜋𝑓2
. (5.68)

This simplifies nicely to

⟨𝜌⟩2 =
2𝐺

(𝜋𝐷𝐿)2𝑐3

∫︁ ∞

0

𝑑𝑓
𝑑𝐸

𝑑𝑓

1

𝑓2𝑃n(𝑓)/ℛ(𝑓)
. (5.69)

Finally, noting that 𝑑𝐸/𝑑𝑓 = 𝑑𝐸/𝑑𝑡 × 𝑑𝑡/𝑑𝑓 = 𝐸̇/𝑓 , we can use the definition of the characteristic strain from Eq.
(5.17) to finish up our position, direction, and orientation/polarisation averaged SNR as

⟨𝜌⟩2(𝜃,𝜑,𝜓),(𝜄,𝛽) =

∫︁ ∞

0

𝑑𝑓
ℎ2𝑐

𝑓2𝑃n(𝑓)/ℛ(𝑓)
=

∫︁ ∞

0

𝑑𝑓
ℎ2𝑐

𝑓2𝑆n(𝑓)
, (5.70)

where we have used that the effective power spectral density of the noise is defined as 𝑆n(𝑓) = 𝑃n(𝑓)/ℛ(𝑓). Note that
this defintion is the sensitivity for a 6-link (3-arm) LISA detector in the long wavelength limit, which is appropriate for
stellar mass binary LISA sources.

It is also important to note that this is only the SNR for a circular binary for which we need only consider the 𝑛 = 2
harmonic. In the general case, a binary could be eccentric and requires a sum over all harmonics. Thus we can
generalise Eq. (5.70) to eccentric binaries with

⟨𝜌⟩2(𝜃,𝜑,𝜓),(𝜄,𝛽) =

∞∑︁
𝑛=1

⟨𝜌𝑛⟩2(𝜃,𝜑,𝜓),(𝜄,𝛽) =

∞∑︁
𝑛=1

∫︁ ∞

0

𝑑𝑓𝑛
ℎ2𝑐,𝑛

𝑓2𝑛𝑆n(𝑓𝑛)
, (5.71)

where 𝑓𝑛 = 𝑛 · 𝑓orb (with 𝑛 being the harmonic and 𝑓orb the orbital frequency), ℎ𝑐,𝑛 is defined in Eq. (5.33) and 𝑆n

in Eq. (5.44).

5.5.5 Different SNR approximations

Although Eq. (5.71) can be used for every binary, it can be useful to consider different cases in which we can avoid
unnecessary sums and integrals. There are four possible cases for binaries in which we can use increasingly simple
expressions for the signal-to-noise ratio. Binaries can be circular and stationary in frequency space.

• Circular binaries emit only in the 𝑛 = 2 harmonic and so the sum over harmonics can be removed

• Stationary binaries have 𝑓𝑛,𝑖 ≈ 𝑓𝑛,𝑓 and so the small interval allows one to approximate the integral

We refer to non-stationary binaries as ‘evolving’ here though many also use ‘chirping’.

For an evolving and eccentric binary, no approximation can be made and the SNR is found using Eq. (5.71).

For an evolving and circular binary, the sum can be removed and so the SNR found as

⟨𝜌⟩2c,e =
1

4

∫︁ 𝑓2,𝑓

𝑓2,𝑖

ℎ2𝑐,2
𝑓22𝑆n(𝑓2)

d𝑓 (5.72)

5.5. Signal-to-Noise Ratios for a 6-link (3-arm) LISA (snr) 141

LEGWORK

For a stationary and eccentric binary we can approximate the integral.

⟨𝜌⟩2e,s =
1

4

∞∑︁
𝑛=1

lim
Δ𝑓→0

∫︁ 𝑓𝑛+Δ𝑓𝑛

𝑓𝑛

ℎ2𝑐,𝑛
𝑓2𝑛𝑆n(𝑓𝑛)

d𝑓𝑛, (5.73)

=
1

4

∞∑︁
𝑛=1

∆𝑓𝑛 · ℎ2𝑐,𝑛
𝑓2𝑛𝑆n(𝑓𝑛)

, (5.74)

=
1

4

∞∑︁
𝑛=1

𝑓𝑛∆𝑇 · ℎ2𝑐,𝑛
𝑓2𝑛𝑆n(𝑓𝑛)

, (5.75)

=
1

4

∞∑︁
𝑛=1

(︃
𝑓𝑛
𝑓2𝑛
ℎ2𝑐,𝑛

)︃
𝑇obs
𝑆n(𝑓𝑛)

, (5.76)

⟨𝜌⟩2e,s =
1

4

∞∑︁
𝑛=1

ℎ2𝑛𝑇obs
𝑆n(𝑓𝑛)

, (5.77)

where we have applied Eq. (5.16) to convert between strains and labelled ∆𝑡 = 𝑇obs. Finally, for a stationary and
circular binary the signal-to-noise ratio is simply

⟨𝜌⟩2c,s =
1

4

ℎ22𝑇obs
𝑆n(𝑓2)

(5.78)

That’s all for the derivations of the equations! If you are confused by something or think there is a mistake please feel
free to open an issue on GitHub.

Continue reading for the function table and references!

5.6 Equation to Function Table

The following table gives a list of the functions in the modules and which equation numbers in this document that they
come from.

Quantity Equation Function
ℳ𝑐 5.1 legwork.utils.chirp_mass()
𝑎 5.2 legwork.utils.get_a_from_forb()
𝑓orb 5.2 legwork.utils.get_forb_from_a()
𝑔(𝑛, 𝑒) 5.3 legwork.utils.peters_g()
𝐹 (𝑒) 5.4 legwork.utils.peters_f()
𝛽 5.6 legwork.utils.beta()
𝑎circ(𝑡), 𝑓orb,circ(𝑡) 5.7 legwork.evol.evol_circ()
𝑡merge,circ 5.8 legwork.evol.get_t_merge_circ()
𝑒(𝑡), 𝑎(𝑡), 𝑓orb(𝑡) 5.11 legwork.evol.evol_ecc()
𝑡merge 5.12 legwork.evol.get_t_merge_ecc()
ℎ𝑐,𝑛 5.33 legwork.strain.h_c_n()
ℎ𝑛 5.36 legwork.strain.h_0_n()
𝑆n(𝑓) 5.44 legwork.psd.power_spectral_density()
𝜌 5.71 legwork.source.Source.get_snr()
𝜌e,e 5.71 legwork.snr.snr_ecc_evolving()
𝜌c,e 5.72 legwork.snr.snr_circ_evolving()
𝜌e,s 5.77 legwork.snr.snr_ecc_stationary()
𝜌c,s 5.78 legwork.snr.snr_circ_stationary()

142 Chapter 5. Derivations and Equation Reference

https://github.com/TeamLEGWORK/LEGWORK/issues/new

LEGWORK

5.7 References

5.7. References 143

LEGWORK

144 Chapter 5. Derivations and Equation Reference

CHAPTER

SIX

SCOPE AND LIMITATIONS

LEGWORK is designed to provide quick estimates of the signal-to-noise ratio of stellar-mass sources of mHz grav-
itational waves. These calculations can be especially helpful when determining which sources in a large population
containing millions of binaries will be potentially detectable by LISA. If you are looking for estimates of non-stellar-
origin sources, check out the Gravitational Wave Universe Toolbox or gwplotter. If you are looking for more advanced
LISA simulator tools, check out lisacattools or ldasoft.

The calculations done by LEGWORK apply the lowest-order post-Newtonian description of gravitational wave emission
and carefully follow the derivation of Flanagan and Hughes 1998a. This means that any higher order effects like spin-
orbit coupling or radiation reaction are not accounted for and thus if a source is expected to depend on these higher
order effects the SNRs provided by LEGWORK may not be representative of the true SNR. LEGWORK’s SNRs are
appropriate at mHz frequencies for sources with masses less than a few tens of solar masses.

LEGWORK provides SNRs for two assumption cases: one where the detector orbit, sky position of the source, and
inclination of the source are all averaged and one where the detector orbit is averaged while the sky position and
inclination of of the source are provided by the user following Cornish and Larson 2003. The calculation which takes the
sky position and inclination of the source into account also accounts for frequency spreading due to doppler modulation
from the detector’s orbit. This means that this calculation is only valid for circular sources and will always return SNRs
that are lower than the fully averaged SNR calculation because of the effects of the frequency spreading.

145

http://gw-universe.org/
http://gwplotter.com/
https://github.com/tlittenberg/lisacattools
https://github.com/tlittenberg/ldasoft
https://ui.adsabs.harvard.edu/abs/1998PhRvD..57.4535F/abstract
https://ui.adsabs.harvard.edu/abs/2003PhRvD..67j3001C/abstract

LEGWORK

146 Chapter 6. Scope and Limitations

BIBLIOGRAPHY

[BabakHewitsonPetiteau21] Stanislav Babak, Martin Hewitson, and Antoine Petiteau. LISA Sensitivity and SNR Cal-
culations. arXiv e-prints, pages arXiv:2108.01167, August 2021. arXiv:2108.01167.

[BarackCutler04] Leor Barack and Curt Cutler. LISA capture sources: Approximate waveforms, signal-to-noise ratios,
and parameter estimation accuracy. Physical Review D, 69(8):082005, April 2004. arXiv:gr-qc/0310125,
doi:10.1103/PhysRevD.69.082005.

[CornishLarson03] Neil J. Cornish and Shane L. Larson. LISA data analysis: Source identification and subtraction.
\prd , 67(10):103001, May 2003. arXiv:astro-ph/0301548, doi:10.1103/PhysRevD.67.103001.

[FinnThorne00] Lee Samuel Finn and Kip S. Thorne. Gravitational waves from a compact star in a circular, inspiral
orbit, in the equatorial plane of a massive, spinning black hole, as observed by LISA. Physical Review
D, 62(12):124021, December 2000. arXiv:gr-qc/0007074, doi:10.1103/PhysRevD.62.124021.

[FlanaganHughes98] Éanna É. Flanagan and Scott A. Hughes. Measuring gravitational waves from binary black hole
coalescences. I. Signal to noise for inspiral, merger, and ringdown. Physical Review D, 57(8):4535–4565,
April 1998. arXiv:gr-qc/9701039, doi:10.1103/PhysRevD.57.4535.

[HuangHuKorol+20] Shun-Jia Huang, Yi-Ming Hu, Valeriya Korol, Peng-Cheng Li, Zheng-Cheng Liang, Yang Lu,
Hai-Tian Wang, Shenghua Yu, and Jianwei Mei. Science with the TianQin Observatory: Preliminary re-
sults on Galactic double white dwarf binaries. \prd , 102(6):063021, September 2020. arXiv:2005.07889,
doi:10.1103/PhysRevD.102.063021.

[MooreColeBerry15] C. J. Moore, R. H. Cole, and C. P. L. Berry. Gravitational-wave sensitivity curves. Classical and
Quantum Gravity, 32(1):015014, January 2015. arXiv:1408.0740, doi:10.1088/0264-9381/32/1/015014.

[Peters64] P. C. Peters. Gravitational Radiation and the Motion of Two Point Masses. Physical Review,
136(4B):1224–1232, November 1964. doi:10.1103/PhysRev.136.B1224.

[PetersMathews63] P. C. Peters and J. Mathews. Gravitational Radiation from Point Masses in a Keplerian Orbit.
Physical Review, 131(1):435–440, July 1963. doi:10.1103/PhysRev.131.435.

[PressThorne72] William H. Press and Kip S. Thorne. Gravitational-Wave Astronomy. \araa , 10:335, January 1972.
doi:10.1146/annurev.aa.10.090172.002003.

[RobsonCornishLiu19] Travis Robson, Neil J. Cornish, and Chang Liu. The construction and use of LISA
sensitivity curves. Classical and Quantum Gravity, 36(10):105011, May 2019. arXiv:1803.01944,
doi:10.1088/1361-6382/ab1101.

147

https://arxiv.org/abs/2108.01167
https://arxiv.org/abs/gr-qc/0310125
https://doi.org/10.1103/PhysRevD.69.082005
https://arxiv.org/abs/astro-ph/0301548
https://doi.org/10.1103/PhysRevD.67.103001
https://arxiv.org/abs/gr-qc/0007074
https://doi.org/10.1103/PhysRevD.62.124021
https://arxiv.org/abs/gr-qc/9701039
https://doi.org/10.1103/PhysRevD.57.4535
https://arxiv.org/abs/2005.07889
https://doi.org/10.1103/PhysRevD.102.063021
https://arxiv.org/abs/1408.0740
https://doi.org/10.1088/0264-9381/32/1/015014
https://doi.org/10.1103/PhysRev.136.B1224
https://doi.org/10.1103/PhysRev.131.435
https://doi.org/10.1146/annurev.aa.10.090172.002003
https://arxiv.org/abs/1803.01944
https://doi.org/10.1088/1361-6382/ab1101

LEGWORK

148 Bibliography

PYTHON MODULE INDEX

l
legwork.evol, 87
legwork.psd, 96
legwork.snr, 100
legwork.source, 105
legwork.strain, 117
legwork.utils, 120
legwork.visualisation, 126

149

LEGWORK

150 Python Module Index

INDEX

A
amplitude_modulation() (in module legwork.strain),

117
approximate_response_function() (in module leg-

work.psd), 97

B
beta() (in module legwork.utils), 123

C
c_0() (in module legwork.utils), 123
check_mass_freq_input() (in module legwork.evol),

94
chirp_mass() (in module legwork.utils), 120
create_harmonics_functions() (leg-

work.source.Source method), 107
create_timesteps_array() (in module legwork.evol),

94

D
D_cross_squared() (in module legwork.utils), 124
D_plus_D_cross() (in module legwork.utils), 125
D_plus_squared() (in module legwork.utils), 124
de_dt() (in module legwork.evol), 88
determine_stationarity() (in module legwork.evol),

95

E
ensure_array() (in module legwork.utils), 124
evol_circ() (in module legwork.evol), 89
evol_ecc() (in module legwork.evol), 90
evolve_f_orb_circ() (in module legwork.evol), 93
evolve_sources() (legwork.source.Source method),

107
Evolving (class in legwork.source), 115

F
F_cross_squared() (in module legwork.utils), 125
F_plus_squared() (in module legwork.utils), 125
find_eccentric_transition() (leg-

work.source.Source method), 108

fn_dot() (in module legwork.utils), 123

G
get_a_from_ecc() (in module legwork.utils), 122
get_a_from_f_orb() (in module legwork.utils), 121
get_confusion_noise() (in module legwork.psd), 99
get_confusion_noise_huang20() (in module leg-

work.psd), 100
get_confusion_noise_robson19() (in module leg-

work.psd), 99
get_confusion_noise_thiele21() (in module leg-

work.psd), 100
get_f_orb_from_a() (in module legwork.utils), 122
get_h_0_n() (legwork.source.Source method), 108
get_h_c_n() (legwork.source.Source method), 108
get_merger_time() (legwork.source.Source method),

108
get_snr() (legwork.source.Evolving method), 115
get_snr() (legwork.source.Source method), 109
get_snr() (legwork.source.Stationary method), 114
get_snr_evolving() (legwork.source.Source method),

110
get_snr_stationary() (legwork.source.Source

method), 110
get_source_mask() (legwork.source.Source method),

111
get_t_merge_circ() (in module legwork.evol), 91
get_t_merge_ecc() (in module legwork.evol), 92

H
h_0_n() (in module legwork.strain), 118
h_c_n() (in module legwork.strain), 119

I
integrate_de_dt() (in module legwork.evol), 89

L
legwork.evol

module, 87
legwork.psd

module, 96
legwork.snr

151

LEGWORK

module, 100
legwork.source

module, 105
legwork.strain

module, 117
legwork.utils

module, 120
legwork.visualisation

module, 126
lisa_psd() (in module legwork.psd), 98
load_response_function() (in module legwork.psd),

96

M
module

legwork.evol, 87
legwork.psd, 96
legwork.snr, 100
legwork.source, 105
legwork.strain, 117
legwork.utils, 120
legwork.visualisation, 126

P
peters_f() (in module legwork.utils), 121
peters_g() (in module legwork.utils), 121
plot_1D_dist() (in module legwork.visualisation), 126
plot_2D_dist() (in module legwork.visualisation), 127
plot_sensitivity_curve() (in module leg-

work.visualisation), 128
plot_source_variables() (legwork.source.Source

method), 112
plot_sources_on_sc() (in module leg-

work.visualisation), 129
plot_sources_on_sc() (legwork.source.Source

method), 112
power_spectral_density() (in module legwork.psd),

97

S
set_g() (legwork.source.Source method), 113
set_sc() (legwork.source.Source method), 113
snr_circ_evolving() (in module legwork.snr), 103
snr_circ_stationary() (in module legwork.snr), 101
snr_ecc_evolving() (in module legwork.snr), 104
snr_ecc_stationary() (in module legwork.snr), 102
Source (class in legwork.source), 105
Stationary (class in legwork.source), 114

T
t_merge_mandel_fit() (in module legwork.evol), 93
tianqin_psd() (in module legwork.psd), 98

U
update_gw_lum_tol() (legwork.source.Source

method), 113
update_sc_params() (legwork.source.Source method),

113

V
VerificationBinaries (class in legwork.source), 116

152 Index

	Citing LEGWORK
	Tutorials
	Quickstart
	Using the Source Class
	Instantiating a Source Class
	Basic input
	Gravitational Wave Luminosity Tolerance
	Stationary Tolerance
	g(n,e) Interpolation
	Sensitivity Curve Interpolation

	Strain and SNR calculations
	Strain functions
	Signal-to-Noise Ratio
	Position-inclination-polarisation specfic sources

	Visualisation
	Parameters Distributions
	Sources on the Sensitivity Curve

	Strains
	Introduction to function usage
	Some example uses
	Circular binaries: effect of mass
	Eccentric binaries: harmonic distribution

	Binary evolution
	Calculating merger times
	Flexible input
	Approximations

	Evolving binaries
	Flexible output
	Timesteps

	Examples uses

	Visualisation
	Setup
	Plotting parameter distributions
	1D distributions
	2D distributions
	Plotting distributions directly from the Source class
	Weighted Samples

	Plot sensitivity curves
	LISA curve
	Alternate instruments

	Plot sources on the sensitivity curve
	Circular and Stationary Binaries
	Eccentric and Stationary Binaries

	Understanding units in LEGWORK
	What units can I use?
	How do I give a variable units?
	Could you show me an example of using units with LEGWORK input?
	How do you convert between units?
	How do I decompose a variable’s value and unit?

	Demos
	Demo - Basic SNR Calculation
	Single source SNR calculation
	Population of sources SNR calculation
	Change sensitivity curve parameters

	Demo - The Role of Eccentricity
	How does eccentricity affect the detectability of a source?
	Demonstration of trends with LEGWORK
	Explanation of the trends

	How does eccentricity affect the merger time?

	Demo - Compare sensitivity curves
	Direct sensitivity curve comparisons
	SNR in different detectors

	Demo - LISA Horizon Distance
	Horizon distance of circular binaries

	Demo - SNR evolution over time
	Demo - Verification binaries

	LEGWORK modules and API reference
	legwork.evol Module
	Functions
	de_dt
	integrate_de_dt
	evol_circ
	evol_ecc
	get_t_merge_circ
	get_t_merge_ecc
	t_merge_mandel_fit
	evolve_f_orb_circ
	check_mass_freq_input
	create_timesteps_array
	determine_stationarity

	legwork.psd Module
	Functions
	load_response_function
	approximate_response_function
	power_spectral_density
	lisa_psd
	tianqin_psd
	get_confusion_noise
	get_confusion_noise_robson19
	get_confusion_noise_huang20
	get_confusion_noise_thiele21

	legwork.snr Module
	Functions
	snr_circ_stationary
	snr_ecc_stationary
	snr_circ_evolving
	snr_ecc_evolving

	legwork.source Module
	Classes
	Source
	Stationary
	Evolving
	VerificationBinaries

	Class Inheritance Diagram

	legwork.strain Module
	Functions
	amplitude_modulation
	h_0_n
	h_c_n

	legwork.utils Module
	Functions
	chirp_mass
	peters_g
	peters_f
	get_a_from_f_orb
	get_f_orb_from_a
	get_a_from_ecc
	beta
	c_0
	fn_dot
	ensure_array
	D_plus_squared
	D_cross_squared
	D_plus_D_cross
	F_plus_squared
	F_cross_squared

	legwork.visualisation Module
	Functions
	plot_1D_dist
	plot_2D_dist
	plot_sensitivity_curve
	plot_sources_on_sc

	Derivations and Equation Reference
	Conversions and Definitions (utils)
	Binary Evolution (evol)
	Circular binaries
	Eccentric binaries

	Gravitational Wave Strains (strain)
	Characteristic Strain
	Amplitude modulation for orbit averaged sources

	Sensitivity Curves (psd)
	LISA
	TianQin

	Signal-to-Noise Ratios for a 6-link (3-arm) LISA (snr)
	Defining the general SNR
	Average over position and polarisation
	Average over orientation
	Fully averaged SNR equation
	Different SNR approximations

	Equation to Function Table
	References

	Scope and Limitations
	Bibliography
	Python Module Index
	Index

